Ideals and Quotients of Diagonally Quasi-Symmetric Functions

نویسنده

  • Shuxiao Li
چکیده

In 2004, J.-C. Aval, F. Bergeron and N. Bergeron studied the algebra of diagonally quasi-symmetric functions DQSym in the ring Q[x,y] with two sets of variables. They made conjectures on the structure of the quotient Q[x,y]/〈DQSym〉, which is a quasi-symmetric analogue of the diagonal harmonic polynomials. In this paper, we construct a Hilbert basis for this quotient when there are infinitely many variables i.e. x = x1, x2, . . . and y = y1, y2, . . . . Then we apply this construction to the case where there are finitely many variables, and compute the second column of its Hilbert matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IDEALS WITH (d1, . . . , dm)-LINEAR QUOTIENTS

In this paper, we introduce the class of ideals with $(d_1,ldots,d_m)$-linear quotients generalizing the class of ideals with linear quotients. Under suitable conditions we control the numerical invariants of a minimal free resolution of ideals with $(d_1,ldots,d_m)$-linear quotients. In particular we show that their first module of syzygies is a componentwise linear module.

متن کامل

Quasi-stability versus Genericity

Quasi-stable ideals appear as leading ideals in the theory of Pommaret bases. We show that quasi-stable leading ideals share many of the properties of the generic initial ideal. In contrast to genericity, quasistability is a characteristic independent property that can be effectively verified. We also relate Pommaret bases to some invariants associated with local cohomology, exhibit the existen...

متن کامل

A CHARACTERIZATION OF BAER-IDEALS

An ideal I of a ring R is called right Baer-ideal if there exists an idempotent e 2 R such that r(I) = eR. We know that R is quasi-Baer if every ideal of R is a right Baer-ideal, R is n-generalized right quasi-Baer if for each I E R the ideal In is right Baer-ideal, and R is right principaly quasi-Baer if every principal right ideal of R is a right Baer-ideal. Therefore the concept of Baer idea...

متن کامل

Fuzzy Soft Quasi-Ideals and Bi-Ideals Over a Right Ternary Near-Ring

Right ternary near-rings (RTNR) are generalization of their binary counterpart and fuzzy soft sets are generalization of soft sets which are parameterized family of subsets of a universal set. In this paper fuzzy soft Nsubgroups, quasi-ideals and bi-ideals over a right ternary near-ring N are defined. The substructures N-subgroups, quasi-ideals and bi-ideals of an RTNR are characterized in term...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2017