Least Squares Fitting of Quadratic Curves and Surfaces

نویسندگان

  • N. Chernov
  • H. Ma
چکیده

In computer vision one often fits ellipses and other conics to observed points on a plane or ellipsoids/quadrics to spacial point clouds. The most accurate and robust fit is obtained by minimizing geometric (orthogonal) distances, but this problem has no closed form solution and most known algorithms are prohibitively slow. We revisit this issue based on recent advances by S. J. Ahn, D. Eberly, and our own. Ahn has sorted out various approaches and identified the most efficient one. Eberly has developed a fast method of projecting points onto ellipses/ellipsoids (and gave a proof of its convergence). We extend Eberly’s projection algorithm to other conics, as well as quadrics in space. We also demonstrate that Eberly’s projection method combined with Ahn’s most efficient approach (and using Taubin’s algebraic fit for initialization) makes a highly efficient fitting scheme working well for all quadratic curves and surfaces. ∗E-mail address: [email protected]; [email protected] 2 N. Chernov and H. Ma

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Revisit to Least Squares Orthogonal Distance Fitting of Parametric Curves and Surfaces

Fitting of data points by parametric curves and surfaces is demanded in many scientific fields. In this paper we review and analyze existing least squares orthogonal distance fitting techniques in a general numerical optimization framework. Two new geometric variant methods (GTDM and CDM) are proposed. The geometric meanings of existing and modified optimization methods are also revealed.

متن کامل

Energy-Minimizing Curve Fitting for High-Order Surface Mesh Generation

We investigate different techniques for fitting Bézier curves to surfaces in context of high-order curvilinear mesh generation. Starting from distance-based least-squares fitting we develop an incremental algorithm, which incorporates approximations of stretch and bending energy. In the process, the algorithm reduces the energy weight in favor of accuracy, leading to an optimized set of samplin...

متن کامل

Stitching B - Spline Curves Symbolically Stitching B - spline

Stitching or merging B-spline curves is a frequently used technique in geometric modeling, and is usually implemented in CAD-systems. These algorithms are basically numerical interpolations using the least squares method. The problem, how to replace two or more curves which are generated separately and defined as B-spline curves, has well functioning numerical solutions, therefore, relatively f...

متن کامل

Fitting Sharp Features with Loop Subdivision Surfaces

Various methods have been proposed for fitting subdivision surfaces to different forms of shape data (e.g., dense meshes or point clouds), but none of these methods effectively deals with shapes with sharp features, that is, creases, darts and corners. We present an effective method for fitting a Loop subdivision surface to a dense triangle mesh with sharp features. Our contribution is a new ex...

متن کامل

Estimation of Planar Curves, Surfaces, and Nonplanar Space Curves Defined by Implicit Equations with Applications to Edge and Range Image Segmentation

This paper addresses the problem of parametric representation and estimation of complex planar curves in 2-D, surfaces in 3-D and nonplanar space curves in 3-D. Curves and surfaces can be defined either parametrically or implicitly, and we use the latter representation. A planar curve is the set of zeros of a smooth function of two variables X-Y, a surface is the set of zeros of a smooth functi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010