Human papillomavirus E6 proteins mediate resistance to interferon-induced growth arrest through inhibition of p53 acetylation.

نویسندگان

  • Christy Hebner
  • Melanie Beglin
  • Laimonis A Laimins
چکیده

The high-risk human papillomavirus (HPV) E6 and E7 proteins act cooperatively to mediate multiple activities in viral pathogenesis. For instance, E7 acts to increase p53 levels while E6 accelerates its rate of turnover through the binding of the cellular ubiquitin ligase E6AP. Interferons are important antiviral agents that modulate both the initial and persistent phases of viral infection. The expression of HPV type 16 E7 was found to sensitize keratinocytes to the growth-inhibitory effects of interferon, while coexpression of E6 abrogates this inhibition. Treatment of E7-expressing cells with interferon ultimately resulted in cellular senescence through a process that is dependent upon acetylation of p53 by p300/CBP at lysine 382. Cells expressing mutant forms of E6 that are unable to bind p300/CBP or bind p53 failed to block acetylation of p53 at lysine 382 and were sensitive to growth arrest by interferon. In contrast, mutant forms of E6 that are unable to bind E6AP remain resistant to the effects of interferon, demonstrating that the absolute levels of p53 are not the major determinants of this activity. Finally, p53 acetylation at lysine 382 was found not to be an essential determinant of other types of senescence such as that induced by overexpression of Ras in human fibroblasts. This study identifies an important physiological role for E6 binding to p300/CBP in blocking growth arrest of human keratinocytes in the presence of interferon and so contributes to the persistence of HPV-infected cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human papillomavirus type 16 E6 and E7 oncogenes abrogate radiation-induced DNA damage responses in vivo through p53-dependent and p53-independent pathways.

E6 and E7 oncoproteins from high risk human papillomaviruses (HPVs) transform cells in tissue culture and induce tumors in vivo. Both E6, which inhibits p53 functions, and E7, which inhibits pRb, can also abrogate growth arrest induced by DNA-damaging agents in cultured cells. In this study, we have used transgenic mice that express HPV-16 E6 or E7 in the epidermis to determine how these two pr...

متن کامل

The ING4 Binding with p53 and Induced p53 Acetylation were Attenuated by Human Papillomavirus 16 E6

High risk subtype HPV16 early oncoprotein E6 contributes host cell immortalization and transformation through interacting with a number of cellular factors. ING4 is one member of the inhibitor of growth (ING) family of type II tumor suppressors and it has been shown to be involved in regulating p53 function. However, the effect and mechanism of HPV16 E6 on ING4 function remain elusive. In this ...

متن کامل

hAda3 degradation by papillomavirus type 16 E6 correlates with abrogation of the p14ARF-p53 pathway and efficient immortalization of human mammary epithelial cells.

Two activities of human papillomavirus type 16 E6 (HPV16 E6) are proposed to contribute to the efficient immortalization of human epithelial cells: the degradation of p53 protein and the induction of telomerase. However, the requirement for p53 inactivation has been debated. Another E6 target is the hAda3 protein, a p53 coactivator and a component of histone acetyltransferase complexes. We have...

متن کامل

Suppression of p53 function in normal human mammary epithelial cells increases sensitivity to extracellular matrix–induced apoptosis

Little is known about the fate of normal human mammary epithelial cells (HMECs) that lose p53 function in the context of extracellular matrix (ECM)-derived growth and polarity signals. Retrovirally mediated expression of human papillomavirus type 16 (HPV-16) E6 and antisense oligodeoxynucleotides (ODNs) were used to suppress p53 function in HMECs as a model of early breast cancer. p53+ HMEC vec...

متن کامل

Implication of p53 in growth arrest and apoptosis induced by the synthetic retinoid CD437 in human lung cancer cells.

CD437 is a novel retinoid that can induce apoptosis in a variety of tumor cell types by an unknown mechanism. We found that CD437 up-regulated the expression of p21(WAF1/CIP1), Bax, and Killer/DR5 and induced G1 arrest and rapid apoptosis in three human non-small cell lung carcinoma cell lines with wild-type p53 but not in five cell lines with mutant p53, suggesting a role for p53 in the effect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 81 23  شماره 

صفحات  -

تاریخ انتشار 2007