Optimized Schwarz Methods for Maxwell equations
نویسندگان
چکیده
Over the last two decades, classical Schwarz methods have been extended to systems of hyperbolic partial differential equations, using characteristic transmission conditions, and it has been observed that the classical Schwarz method can be convergent even without overlap in certain cases. This is in strong contrast to the behavior of classical Schwarz methods applied to elliptic problems, for which overlap is essential for convergence. More recently, optimized Schwarz methods have been developed for elliptic partial differential equations. These methods use more effective transmission conditions between subdomains than the classical Dirichlet conditions, and optimized Schwarz methods can be used both with and without overlap for elliptic problems. A simple computation shows why the classical Schwarz method applied to both the time harmonic and time discretized Maxwell’s equations converges without overlap: for a given frequency we obtain the same convergence rate as for an optimized Schwarz method for a scalar elliptic equation. Based on this insight, we show how to develop an entire new hierarchy of optimized overlapping and nonoverlapping Schwarz methods for Maxwell’s equations with greatly enhanced performance compared to the classical Schwarz method. We also derive for each algorithm asymptotic formulas for the optimized transmission conditions, which can easily be used in implementations of the algorithms for problems with variable coefficients. We illustrate our findings with numerical experiments.
منابع مشابه
Optimized Schwarz Methods for Maxwell’s Equations with Non-zero Electric Conductivity
The study of optimized Schwarz methods for Maxwell’s equations started with the Helmholtz equation, see [2, 3, 4, 11]. For the rot-rot formulation of Maxwell’s equations, optimized Schwarz methods were developed in [1], and for the more general form in [9, 10]. An entire hierarchy of families of optimized Schwarz methods was analyzed in [8], see also [5] for discontinuous Galerkin discretizatio...
متن کاملOptimized Schwarz Methods for Maxwell's Equations
Over the last two decades, classical Schwarz methods have been extended to systems of hyperbolic partial differential equations, using characteristic transmission conditions, and it has been observed that the classical Schwarz method can be convergent even without overlap in certain cases. This is in strong contrast to the behavior of classical Schwarz methods applied to elliptic problems, for ...
متن کاملDiscontinuous Galerkin discretizations of Optimized Schwarz methods for solving the time-harmonic Maxwell equations
We show in this paper how to properly discretize optimized Schwarz methods for the time-harmonic Maxwell equations using a discontinuous Galerkin (DG) method. Due to the multiple traces between elements in the DG formulation, it is not clear a priori how the more sophisticated transmission conditions in optimized Schwarz methods should be discretized, and the most natural approach does not lead...
متن کاملDG discretization of optimized Schwarz methods for Maxwell's equations
In the last decades, Discontinuous Galerkin (DG) methods have seen rapid growth and are widely used in various application domains (see [13] for an historical introduction). This is due to their main advantage of combining the best of finite element and finite volume methods. For the time-harmonic Maxwell equations, once the problem is discretized with a DG method, finding robust solvers is a d...
متن کاملar X iv : m at h / 06 10 53 1 v 3 [ m at h . N A ] 2 4 O ct 2 00 6 OPTIMIZED SCHWARZ METHODS FOR MAXWELL EQUATIONS
Over the last two decades, classical Schwarz methods have been extended to systems of hyperbolic partial differential equations, and it was observed that the classical Schwarz method can be convergent even without overlap in certain cases. This is in strong contrast to the behavior of classical Schwarz methods applied to elliptic problems, for which overlap is essential for convergence. Over th...
متن کامل