Integrated genetic approaches identify the molecular mechanisms of Sox4 in early B-cell development: intricate roles for RAG1/2 and CK1ε.
نویسندگان
چکیده
Commitment of hematopoietic stem cells to B lineage precursors and subsequent development of B lineage precursors into mature B cells is stringently controlled by stage-specific transcription factors. In this study, we used integrated genetic approaches and systematically determined the role of Sry-related high mobility group box (Sox) 4 and the underlying molecular mechanisms in early B-cell development. We found that Sox4 coordinates multilevel controls in the differentiation of early stage B cells. At the molecular level, Sox4 orchestrates a unique gene regulatory program, and its function was predominantly mediated through a conventional Sox4-binding motif as well as an unconventional GA-binding protein α chain binding motif. Our integrated gene network and functional analysis indicated that Sox4 functions as a bimodular transcription factor and ensures B lineage precursor differentiation through 2 distinct mechanisms. It positively induces gene rearrangements at immunoglobulin heavy chain gene loci by transcriptionally activating the Rag1 and Rag2 genes and negatively regulates Wnt signaling, which is critical for self-renewal, by inducing the expression of casein kinase 1 ε. Our findings illustrate that Sox4 mediates critical fine-tuning of the 2 opposing forces in early B-cell development and also set forth a model for characterization of critical genes whose deficiency, like Sox4 deficiency, is detrimental to this process.
منابع مشابه
Exploring Gene Signatures in Different Molecular Subtypes of Gastric Cancer (MSS/ TP53+, MSS/TP53-): A Network-based and Machine Learning Approach
Gastric cancer (GC) is one of the leading causes of cancer mortality, worldwide. Molecular understanding of GC’s different subtypes is still dismal and it is necessary to develop new subtype-specific diagnostic and therapeutic approaches. Therefore developing comprehensive research in this area is demanding to have a deeper insight into molecular processes, underlying these subtypes. In this st...
متن کاملO-8: Molecular Mechanisms of Membrane Fusion Involved in Fertilization
Background: Assisted fertilization procedures are a currently widespread practice to regulate reproduction in humans and animals. The arising question is why the human being manipulating gametes to generate new individuals, if we do not understand yet the molecular mechanism of fertilization?. Successful completion of fertilization in mammals is dependent on three membrane fusion events: 1. the...
متن کاملEfficient Production of Biallelic RAG1 Knockout Mouse Embryonic Stem Cell Using CRISPR/Cas9
Background: Recombination Activating Genes (RAG) mutated embryonic stem cells are (ES) cells which are unable to perform V (D) J recombination. These cells can be used for generation of immunodeficient mouse. Creating biallelic mutations by CRISPR/Cas9 genome editing has emerged as a powerful technique to generate site-specific mutations in different sequences. Ob...
متن کاملMolecular Markers for Fertility in Farm Animals
A genetic marker is a gene or DNA sequence with known localization on a chromosome. It can be de-scribed as a variation that can be measured or detected by a suitable method, and can be used subsequently to detect the presence of a specific genotype. Such variations occurring at chromosomal or DNA level can serve as genetic markers. The progress in development of molecular markers suggests thei...
متن کاملNon-Canonical Roles for RAG1 in Lymphocyte Development
The RAG1/RAG2 (RAG) endonuclease recombines accessible antigen receptor (AgR) genes through DNA double strand break (DSB) intermediates to generate a diverse AgR repertoire. RAG-mediated DSBs signal changes in expression of genes encoding proteins involved in cellular survival, lymphocyte differentiation, and AgR selection. RAG proteins are each comprised of "core" endonuclease domains and disp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 123 26 شماره
صفحات -
تاریخ انتشار 2014