Micro-colony array based high throughput platform for enzyme library screening.
نویسندگان
چکیده
Enzymes are becoming increasingly important tools for synthesizing and modifying fine and bulk chemicals. The availability of biocatalysts which fulfil the requirements of industrial processes is often limited. Recruiting suited enzymes from natural (e.g. metagenomes) and artificial (e.g. directed evolution) biodiversity is based on screening libraries of microbial clones expressing enzyme variants. However, exploring the complex diversity of such libraries needs efficient screening methods. Overcoming the "screening bottleneck" requires rapid high throughput technology allowing the analysis of a large diversity of different enzymes and applying different screening conditions. Facing these facts an efficient and cost effective method for high throughput screening of large enzyme libraries at the colony level was developed. Therefore, ordered high density micro-colony arrays were combined with optical sensor technology and automated image analysis. The system generally allows the simultaneous monitoring of enzyme activities reflected by up to 7000 micro-colonies spotted on a filter in the size of a micro-titer plate. A developed replica option also allows the analysis of clones under varying external conditions. The method was verified by a model screening using esterases and was proved to provide reliable enzyme activity measurements within single micro-colonies allowing the discrimination of activity differences in the range of 10-20%.
منابع مشابه
Flow-Based Single Cell Deposition for High-Throughput Screening of Protein Libraries
The identification and engineering of proteins having refined or novel characteristics is an important area of research in many scientific fields. Protein modelling has enabled the rational design of unique proteins, but high-throughput screening of large libraries is still required to identify proteins with potentially valuable properties. Here we report on the development and evaluation of a ...
متن کاملNovel method for high-throughput colony PCR screening in nanoliter-reactors
We introduce a technology for the rapid identification and sequencing of conserved DNA elements employing a novel suspension array based on nanoliter (nl)-reactors made from alginate. The reactors have a volume of 35 nl and serve as reaction compartments during monoseptic growth of microbial library clones, colony lysis, thermocycling and screening for sequence motifs via semi-quantitative fluo...
متن کاملA fluorescent hydrogel-based flow cytometry high-throughput screening platform for hydrolytic enzymes.
Screening throughput is a key in directed evolution experiments and enzyme discovery. Here, we describe a high-throughput screening platform based on a coupled reaction of glucose oxidase and a hydrolase (Yersinia mollaretii phytase [YmPh]). The coupled reaction produces hydroxyl radicals through Fenton's reaction, acting as initiator of poly(ethyleneglycol)-acrylate-based polymerization incorp...
متن کاملHigh-throughput screening for industrial enzyme production hosts by droplet microfluidics.
A high-throughput method for single cell screening by microfluidic droplet sorting is applied to a whole-genome mutated yeast cell library yielding improved production hosts of secreted industrial enzymes. The sorting method is validated by enriching a yeast strain 14 times based on its α-amylase production, close to the theoretical maximum enrichment. Furthermore, a 10(5) member yeast cell lib...
متن کاملProtein arrays for gene expression and molecular interaction screening.
The array format has revolutionised biomedical experimentation and diagnostics, enabling ordered high-throughput analysis. During the past decade, classic solid phase substrates, such as microtitre plates, membrane filters and microscopic slides, were turned into high-density, chip-like structures. The concept of the arrayed library was central to this development which now extends from DNA to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biotechnology
دوره 129 1 شماره
صفحات -
تاریخ انتشار 2007