Adaptive Wavelet Extreme Learning Machine (AW-ELM) for Index Finger Recognition Using Two-Channel Electromyography
نویسندگان
چکیده
This paper proposes a new structure of wavelet extreme learning machine i.e. an adaptive wavelet extreme learning machine (AW-ELM) for finger motion recognition using only two EMG channels. The adaptation mechanism is performed by adjusting the wavelet shape based on the input information. The performance of the proposed method is compared to ELM using wavelet (W-ELM0 and sigmoid (Sig-ELM) activation function. The experimental results demonstrate that the proposed AW-ELM performs better than W-ELM and Sig-ELM.
منابع مشابه
Real-time Classification of Finger Movements using Two-channel Surface Electromyography
The use of a small number of Electromyography (EMG) channels for classifying the finger movement is a challenging task. This paper proposes the recognition system for decoding the individual and combined finger movements using two channels surface EMG. The proposed system utilizes Spectral Regression Discriminant Analysis (SRDA) for dimensionality reduction, Extreme Learning Machine (ELM) for c...
متن کاملModeling Discharge Coefficient of Side Weir on Converging Channel Using Extreme Learning Machine
In this study, the discharge coefficient of side weirs located on converging channels was simulated for the first time using a new method of Extreme Learning Machine (ELM). To examine the accuracy of the numerical model, the Monte Carlo simulations were used and the experimental values validation was conducted by the k-fold cross validation method. Then, the input parameters were detected for s...
متن کاملEvaluation of extreme learning machine for classification of individual and combined finger movements using electromyography on amputees and non-amputees
The success of myoelectric pattern recognition (M-PR) mostly relies on the features extracted and classifier employed. This paper proposes and evaluates a fast classifier, extreme learning machine (ELM), to classify individual and combined finger movements on amputees and non-amputees. ELM is a single hidden layer feed-forward network (SLFN) that avoids iterative learning by determining input w...
متن کاملعیبیابی سازهها با استفاده از شاخص تابع پاسخ فرکانسی و مدل جایگزین مبتنی بر الگوریتم ماشین یادگیری حداکثر بهینه شده
Utilizing surrogate models based on artificial intelligence methods for detecting structural damages has attracted the attention of many researchers in recent decades. In this study, a new kernel based on Littlewood-Paley Wavelet (LPW) is proposed for Extreme Learning Machine (ELM) algorithm to improve the accuracy of detecting multiple damages in structural systems. ELM is used as metamo...
متن کاملAbstract Projecting a high dimensional feature into a low- dimensional feature without compromising the feature
Projecting a high dimensional feature into a lowdimensional feature without compromising the feature characteristic is a challenging task. This paper proposes a novel dimensionality reduction constituted from the integration of extreme learning machine (ELM) and spectral regression (SR). The ELM in the proposed method is built on the structure of the unsupervised ELM. The hidden layer weights a...
متن کامل