Upscaling for Two-phase Flows in Porous Media
نویسندگان
چکیده
The understanding and modeling of flow through porous media is an important issue in several branches of engineering. In petroleum engineering, for instance, one wishes to model the “enhanced oil recovery” process, whereby water or steam is injected into an oil saturated porous media in an attempt to displace the oil so that it can be collected. In groundwater contaminant studies the transport of dissolved material, such as toxic metals or radioactive waste, and how it affects drinking water supplies, is of interest. Numerical simulation of these flow are generally difficult. The principal reason for this is the presence of many different length scales in the physical problem, and resolving all these is computationally expensive. To circumvent these difficulties a class of methods known as upscaling methods has been developed where one attempts to solve only for large scale features of interest and model the effect of the small scale features. In this thesis, we review some of the previous efforts in upscaling and introduce a new scheme that attempts to overcome some of the existing shortcomings of these methods. In our analysis, we consider the flow problem in two distinct stages: the first is the determination of the velocity field which gives rise to an elliptic partial differential equation (PDE) and the second is a transport problem which gives rise to a hyperbolic PDE. For the elliptic part, we make use of existing upscaling methods for elliptic equations. In particular, we use the multi-scale finite element method of Hou et al. to solve for the velocity field on a coarse grid, and yet still be able to obtain fine scale information through a special means of interpolation. The analysis of the hyperbolic part forms the main contribution of this thesis. We first analyze the problem by restricting ourselves to the case where the small scales have a periodic structure. With this assumption, we are able to derive a coupled set of equations for the large scale average and the small scale fluctuations about this average. This is done by means of a special averaging, which is done along the fine scale streamlines. This v coupled set of equations provides better starting point for both the modeling of the largescale small-scale interactions and the numerical implementation of any scheme. We derive an upscaling scheme from this by tracking only a sub-set of the fluctuations, which are used to approximate the scale interactions. Once this model has been derived, we discuss and present a means to extend it to the case where the fluctuations are more general than periodic. In the sections that follow we provide the details of the numerical implementation, which is a very significant part of any practical method. Finally, we present numerical results using the new scheme and compare this with both resolved computations and some existing upscaling schemes.
منابع مشابه
A Framework for Modeling Subgrid Effects for Two-Phase Flows in Porous Media
In this paper, we study upscaling for two-phase flows in strongly heterogeneous porous media. Upscaling a hyperbolic convection equation is known to be very difficult due to the presence of nonlocal memory effects. Even for a linear hyperbolic equation with a shear velocity field, the upscaled equation involves a nonlocal history dependent diffusion term, which is not amenable to computation. B...
متن کاملA Two Level Scaling-up method for multiphase flow in porous media; numerical validation and comparison with other methods
We present a robust and accurate strategy for upscaling two-phase flow in heterogeneous porous media composed of different rock-types. The method is tested by means of numerical simulations and compared with other upscaling methods.
متن کاملComparison of Thermal Dispersion Effects for Single and two Phase Analysis of Heat Transfer in Porous Media
The present work involves numerical simulation of a steady, incompressible forcedconvection fluid flow through a matrix of porous media between two parallel plates at constanttemperature. A Darcy model for the momentum equation was employed. The mathematical model forenergy transport was based on single phase equation model which assumes local thermal equilibriumbetween fluid and solid phases. ...
متن کاملA multilevel multiscale mimetic (M3) method for two-phase flows in porous media
Flow simulations in porous media involve a wide range of strongly coupled scales. The length scale of short and narrow channels is on the order of millimeters, while the size of a simulation domain may be several kilometers (the richest oil reservoir in Saudi Arabia, Ghawar, is 280 km ×30 km). The permeability of rock formations is highly heterogeneous and may span several orders of magnitude, ...
متن کاملUpscaling of Transport Equations for Multiphase and Multicomponent Flows
In this paper we discuss upscaling of immiscible multiphase and miscible multicomponent flow and transport in heterogeneous porous media. The discussion presented in the paper summarizes the results of in Upscaled Modeling in Multiphase Flow Applications by Ginting et al. (2004) and in Upscaling of Multiphase and Multicomponent Flow by Ginting et al. (2006). Perturbation approaches are used to ...
متن کاملModelling Complex Flows in Porous Media by Means of Upscaling Procedures
Abstract. We review a series of problems arising in the field of flows through porous media and that are highly nontrivial either because of the presence of mass exchange between the fluid and the porous matrix (or other concurrent phenomena of physical or chemical nature), or because of a particularly complex structure of the medium. In all these cases there is a small parameter ε, representin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005