Stable Horizontal Interface Formation and Separation of a Water/Oil Flow by Microfluidic Reactor Analyzed by Direct Observation and Numerical Simulation

نویسندگان

  • Masaya Miyazaki
  • Yoshiko Yamaguchi
  • Takeshi Honda
  • Hideaki Maeda
چکیده

A microfluidic system with a wide surface area per unit volume has the potential for use in highly efficient chemical synthesis, separation, and extraction. In the case of efficient water/oil separation and material extraction, it becomes important to form a stable two-layer laminar flow interface. Previously, we developed a silicon/glass microfluidic reactor, in which microchannel inner walls were modified to produce hydrophilic/hydrophobic surface. In this work, flow behavior and separation of this microreactor was evaluated. This microfluidic chip made it possible to form a stable twolayer laminar flow interface between a flow of heavier water and lighter hexane, which were introduced into the upper and lower inlets, respectively. The efficiency in separation was examined using water and hexane. Under certain conditions including the pressure difference between the two outlet surfaces, complete phase separation was achieved. This result indicates that the highly efficient separation and stable interface formed by this microfluidic chip can be applied to immiscible liquid-liquid operations with the complete separation of the liquids at the outlets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Study of Droplet Generation Process in a Microfluidic Flow Focusing

Microfluidic flow focusing devices have been utilized for droplet generation on account of its superior control over droplet size. Droplet based microfluidics addressed many scientific issues by providing a novel technological platform for applications such as biology, pharmaceutical industry, biomedical studies and drug delivery. This study numerically investigated the droplet generation proce...

متن کامل

Simulation of Strap-On Boosters Separation in the Atmosphere

A numerical dynamic-aerodynamic interface for simulating the separation dy­n­a­m­ic­s of co­n­­s­t­r­a­i­ned strap-on boosters jettisoned in the atmosphere is presented. A 6-DOF multi body dynamic solver ،using Constraint For­ce Equation Methodology is coupled with a numerical time dependent Euler flow solver. An automatic dyna­m­i­­c mesh updating proc­e­d­ure is employed using smoothing and l...

متن کامل

A Dynamic Simulation of Annular Multiphase Flow during Deep-water Horizontal Well Drilling and the Analysis of Influential Factors

A gas kick simulation model for deep-water horizontal well with diesel-based drilling fluid is presented in this paper. This model is mainly based on the mass, momentum, and energy conservation equations. The unique aspect of this model is the fluid-gas coupling and the change of mud properties after the gas influx from the formation. The simulation results show that the gas in an annulus disso...

متن کامل

Recurrence networks from multivariate signals for uncovering dynamic transitions of horizontal oil-water stratified flows

Characterizing the mechanism of drop formation at the interface of horizontal oilwater stratified flows is a fundamental problem eliciting a great deal of attention from different disciplines. We experimentally and theoretically investigate the formation and transition of horizontal oil-water stratified flows. We design a new multi-sector conductance sensor and measure multivariate signals from...

متن کامل

Simulation of local scour caused by submerged horizontal jets with Flow-3D numerical model

One of the most concerning issues for researchers is to predict the shape and dimensions of the scour pit nearhydraulic structures such as the base of bridges, weirs, valves and stilling basins due to both financial and humanhazards induced by destruction of the structure. As the scour issue has its own complexity in relation to themultiplicity of effecting factors on it, in this study therefor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011