CGMF: Coupled Group-Based Matrix Factorization for Recommender System

نویسندگان

  • Fangfang Li
  • Guandong Xu
  • Longbing Cao
  • Xiaozhong Fan
  • Zhendong Niu
چکیده

With the advent of social influence, social recommender systems have become an active research topic for making recommendations based on the ratings of the users that have close social relations with the given user. The underlying assumption is that a user’s taste is similar to his/her friends’ in social networking. In fact, users enjoy different groups of items with different preferences. A user may be treated as trustful by his/her friends more on some specific rather than all groups. Unfortunately, most of the extant social recommender systems are not able to differentiate user’s social influence in different groups, resulting in the unsatisfactory recommendation results. Moreover, most extant systems mainly rely on social relations, but overlook the influence of relations between items. In this paper, we propose an innovative coupled group-based matrix factorization model for recommender system by leveraging the user and item groups learned by topic modeling and incorporating couplings between users and items and within users and items. Experiments conducted on publicly available data sets demonstrate the effectiveness of our approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A social recommender system based on matrix factorization considering dynamics of user preferences

With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...

متن کامل

A new approach for building recommender system using non negative matrix factorization method

Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is ​​decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...

متن کامل

Attributes Coupling based Item Enhanced Matrix Factorization Technique for Recommender Systems

Recommender system has attracted lots of attentions since it helps users alleviate the information overload problem. Matrix factorization technique is one of the most widely employed collaborative filtering techniques in the research of recommender systems due to its effectiveness and efficiency in dealing with very large user-item rating matrices. Recently, based on the intuition that addition...

متن کامل

Coupled Item-Based Matrix Factorization

The essence of the challenges cold start and sparsity in Recommender Systems (RS) is that the extant techniques, such as Collaborative Filtering (CF) and Matrix Factorization (MF), mainly rely on the user-item rating matrix, which sometimes is not informative enough for predicting recommendations. To solve these challenges, the objective item attributes are incorporated as complementary informa...

متن کامل

Improvement of Matrix Factorization-based Recommender Systems Using Similar User Index

Matrix factorization-based approaches have proven to be efficient for recommender systems. However, due to the time complexity in composing recommendations, matrix factorization-based approaches are inefficient in dealing with large scale datasets. In this paper, we present a new similar user index-based matrix factorization approach for large scale recommender systems. Finding similar users is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013