Convergence Rates for Greedy Kaczmarz Algorithms, and Faster Randomized Kaczmarz Rules Using the Orthogonality Graph
نویسندگان
چکیده
The Kaczmarz method is an iterative algorithm for solving systems of linear equalities and inequalities, that iteratively projects onto these constraints. Recently, Strohmer and Vershynin [J. Fourier Anal. Appl., 15(2):262-278, 2009] gave a non-asymptotic convergence rate analysis for this algorithm, spurring numerous extensions and generalizations of the Kaczmarz method. Rather than the randomized selection rule analyzed in that work, in this paper we instead discuss greedy and approximate greedy selection rules. We show that in some applications the computational costs of greedy and random selection are comparable, and that in many cases greedy selection rules give faster convergence rates than random selection rules. Further, we give the first multi-step analysis of Kaczmarz methods for a particular greedy rule, and propose a provably-faster randomized selection rule for matrices with many pairwise-orthogonal rows.
منابع مشابه
Convergence Rates for Greedy Kaczmarz Algorithms, and Randomized Kaczmarz Rules Using the Orthogonality Graph
The Kaczmarz method is an iterative algorithm for solving systems of linear equalities and inequalities, that iteratively projects onto these constraints. Recently, Strohmer and Vershynin [J. Fourier Anal. Appl., 15(2):262-278, 2009] gave a non-asymptotic convergence rate analysis for this algorithm, spurring numerous extensions and generalizations of the Kaczmarz method. Rather than the random...
متن کاملConvergence Rates for Greedy Kaczmarz Algorithms
We discuss greedy and approximate greedy selection rules within Kaczmarz algorithms for solving linear systems. We show that in some applications the costs of greedy and randomized rules are similar, and that greedy selection gives faster convergence rates. Further, we give a multi-step analysis of a particular greedy rule showing it can be much faster when many rows are orthogonal.
متن کاملKaczmarz Iterative Projection and Nonuniform Sampling with Complexity Estimates.
Kaczmarz's alternating projection method has been widely used for solving mostly over-determined linear system of equations A x = b in various fields of engineering, medical imaging, and computational science. Because of its simple iterative nature with light computation, this method was successfully applied in computerized tomography. Since tomography generates a matrix A with highly coherent ...
متن کاملAccelerated Kaczmarz Algorithms using History Information
The Kaczmarz algorithm is a well known iterative method for solving overdetermined linear systems. Its randomized version yields provably exponential convergence in expectation. In this paper, we propose two new methods to speed up the randomized Kaczmarz algorithm by utilizing the past estimates in the iterations. The first one utilize the past estimates to get a preconditioner. The second one...
متن کاملDeterministic Versus Randomized Kaczmarz Iterative Projection
The Kaczmarz’s alternating projection method has been widely used for solving a consistent (mostly over-determined) linear system of equations Ax = b. Because of its simple iterative nature with light computation, this method was successfully applied in computerized tomography. Since tomography generates a matrix A with highly coherent rows, randomized Kaczmarz algorithm is expected to provide ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1612.07838 شماره
صفحات -
تاریخ انتشار 2016