Complete Axioms for Categorical Fixed-Point Operators
نویسندگان
چکیده
We give an axiomatic treatment of fixed-point operators in categories. A notion of iteration operator is defined, embodying the equational properties of iteration theories. We prove a general completeness theorem for iteration operators, relying on a new, purely syntactic characterisation of the free iteration theory. We then show how iteration operators arise in axiomatic domain theory. One result derives them from the existence of sufficiently many bifree algebras (exploiting the universal property Freyd introduced in his notion of algebraic compactness). Another result shows that, in the presence of a parameterized natural numbers object and an equational lifting monad, any uniform fixed-point operator is necessarily an iteration operator.
منابع مشابه
Axioms for Recursion in Call-by-Value
We propose an axiomatization of fixpoint operators in typed call-by-value programming languages, and give its justifications in two ways. First, it is shown to be sound and complete for the notion of uniform T -fixpoint operators of Simpson and Plotkin. Second, the axioms precisely account for Filinski’s fixpoint operator derived from an iterator (infinite loop constructor) in the presence of f...
متن کاملJoins in the Frame of Nuclei
Joins in the frame of nuclei are hard to describe explicitly because a pointwise join of a set of closure operators on a complete lattice fails to be idempotent in general. We calculate joins of nuclei as least fixed points of inflationary operators on prenuclei. Using a recent fixed-point theorem due to Pataraia, we deduce an induction principle for joins of nuclei. As an illustration of the t...
متن کاملRemarks on the Paper ``Coupled Fixed Point Theorems for Single-Valued Operators in b-Metric Spaces''
In this paper, we improve some recent coupled fixed point resultsfor single-valued operators in the framework of ordered $b$-metricspaces established by Bota et al. [M-F. Bota, A. Petrusel, G.Petrusel and B. Samet, Coupled fixed point theorems forsingle-valued operators in b-metric spaces, Fixed Point TheoryAppl. (2015) 2015:231]. Also, we prove that Perov-type fix...
متن کاملA new characterization for Meir-Keeler condensing operators and its applications
Darbo's fixed point theorem and its generalizations play a crucial role in the existence of solutions in integral equations. Meir-Keeler condensing operators is a generalization of Darbo's fixed point theorem and most of other generalizations are a special case of this result. In recent years, some authors applied these generalizations to solve several special integral equations and some of the...
متن کاملOn new faster fixed point iterative schemes for contraction operators and comparison of their rate of convergence in convex metric spaces
In this paper we present new iterative algorithms in convex metric spaces. We show that these iterative schemes are convergent to the fixed point of a single-valued contraction operator. Then we make the comparison of their rate of convergence. Additionally, numerical examples for these iteration processes are given.
متن کامل