A Balancing Domain Decomposition Method for Magnetostatic Problems with a Multigrid Strategy

نویسنده

  • Daisuke TAGAMI
چکیده

A balancing domain decomposition (BDD) method is considered as a preconditioner of the iterative domain decomposition method (DDM) for magnetostatic problems. The BDD method enables us to keep convergence properties of the iterative DDM even if the number of subdomains increases. However, in case of magnetostatic problems, the dimension of the coarse problem required in the BDD procedure depends on the number of nodal points of the discretization based on the finite element method. This fact causes that computational costs increase as computational models become larger. Therefore, to reduce the computational costs, a kind of multigrid strategy is introduced into the BDD procedure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel 3 D Maxwell Solvers based on Domain Decomposition Data Distribution

The most efficient solvers for finite element (fe) equations are certainly multigrid, or multilevel methods, and domain decomposition methods using local multigrid solvers. Typically, the multigrid convergence rate is independent of the mesh size parameter, and the arithmetical complexity grows linearly with the number of unknowns. However, the standard multigrid algorithms fail for the Maxwell...

متن کامل

Algebraic Multigrid Method for Solving 3D Nonlinear Electrostatic and Magnetostatic Field Problems

A recently developed robust Algebraic Multigrid (AMG) method for the efficient solution of 3D nonlinear electrostatic and magnetostatic field problems will be presented. The method is directed to large matrix equations which arise from finite element (FE) discretization where AMG is used as a preconditioner in the Preconditioned Conjugate Gradient (PCG) method. Numerical results will demonstrat...

متن کامل

Multigrid and Domain Decomposition Methods for Electrostatics Problems

We consider multigrid and domain decomposition methods for the numerical solution of electrostatics problems arising in biophysics. We compare multigrid methods designed for discontinuous coefficients with domain decomposition methods, including comparisons of standard multigrid methods, algebraic multigrid methods, additive and multiplicative Schwarz domain decomposition methods, and accelerat...

متن کامل

On the Use of Inexact Subdomain Solvers for BDDC Algorithms

The standard BDDC (balancing domain decomposition by constraints) preconditioner is shown to be equivalent to a preconditioner built from a partially subassembled finite element model. This results in a system of linear algebraic equations which is much easier to solve in parallel than the fully assembled model; the cost is then often dominated by that of the problems on the subdomains. An impo...

متن کامل

NYU-CS-TR2005-871 On the Use of Inexact Subdomain Solvers for BDDC Algorithms

The standard BDDC (balancing domain decomposition by constraints) preconditioner is shown to be equivalent to a preconditioner built from a partially subassembled finite element model. This results in a system of linear algebraic equations which is much easier to solve in parallel than the fully assembled model; the cost is then often dominated by that of the problems on the subdomains. An impo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015