The power of single-nucleotide polymorphisms for large-scale parentage inference.

نویسندگان

  • Eric C Anderson
  • John Carlos Garza
چکیده

Likelihood-based parentage inference depends on the distribution of a likelihood-ratio statistic, which, in most cases of interest, cannot be exactly determined, but only approximated by Monte Carlo simulation. We provide importance-sampling algorithms for efficiently approximating very small tail probabilities in the distribution of the likelihood-ratio statistic. These importance-sampling methods allow the estimation of small false-positive rates and hence permit likelihood-based inference of parentage in large studies involving a great number of potential parents and many potential offspring. We investigate the performance of these importance-sampling algorithms in the context of parentage inference using single-nucleotide polymorphism (SNP) data and find that they may accelerate the computation of tail probabilities >1 millionfold. We subsequently use the importance-sampling algorithms to calculate the power available with SNPs for large-scale parentage studies, paying particular attention to the effect of genotyping errors and the occurrence of related individuals among the members of the putative mother-father-offspring trios. These simulations show that 60-100 SNPs may allow accurate pedigree reconstruction, even in situations involving thousands of potential mothers, fathers, and offspring. In addition, we compare the power of exclusion-based parentage inference to that of the likelihood-based method. Likelihood-based inference is much more powerful under many conditions; exclusion-based inference would require 40% more SNP loci to achieve the same accuracy as the likelihood-based approach in one common scenario. Our results demonstrate that SNPs are a powerful tool for parentage inference in large managed and/or natural populations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using blocks of linked single nucleotide polymorphisms as highly polymorphic genetic markers for parentage analysis.

Single nucleotide polymorphisms (SNPs) are plentiful in most genomes and amenable to high throughput genotyping, but they are not yet popular for parentage or paternity analysis. The markers are bi-allelic, so individually they contain little information about parentage, and in nonmodel organisms the process of identifying large numbers of unlinked SNPs can be daunting. We explore the possibili...

متن کامل

Single Nucleotide Polymorphisms and Association Studies: A Few Critical Points

Uncovering DNA sequence variations that correlate with phenotypic changes, e.g., diseases, is the aim of sequence variation studies. Common types sequence variations are Single nucleotide polymorphism (SNP, pronounced snip).SNPs are the third-generation molecular marker. SNP represents a DNA sequence variant of a single base pair with the minor allele occurring in more than 1% of a given popula...

متن کامل

Association of two single nucleotide polymorphisms rs10407022 and rs3741664 with the risk of primary ovarian insufficiency in a sample of Iraqi women

Primary ovarian insufficiency (POI) can be a devastating disease impacting women below the age of forty. This involves a major decrease in the amount and quality of oocytes, or ovarian reserve in a woman. The distribution of single-nucleotide polymorphisms, rs10407022 and rs3741664, in Iraqi people and its association with primary ovarian insufficiency is the main objective of this study. The m...

متن کامل

Imputation of Microsatellite Alleles from Dense SNP Genotypes for Parental Verification

Microsatellite (MS) markers have recently been used for parental verification and are still the international standard despite higher cost, error rate, and turnaround time compared with Single Nucleotide Polymorphisms (SNP)-based assays. Despite domestic and international interest from producers and research communities, no viable means currently exist to verify parentage for an individual unle...

متن کامل

In-silico study to identify the pathogenic single nucleotide polymorphisms in the coding region of CDKN2A gene

Background: CDKN2A, encoding two important tumor suppressor proteins p16 and p14, is a tumor suppressor gene. Mutations in this gene and subsequently the defect in p16 and p14 proteins lead to the downregulation of RB1/p53 and cancer malignancy. To identify the structural and functional effects of mutations, various powerful bioinformatics tools are available. The aim of this study is the ident...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 172 4  شماره 

صفحات  -

تاریخ انتشار 2006