Counting the number of non-zero coefficients in rows of generalized Pascal triangles

نویسندگان

  • Julien Leroy
  • Michel Rigo
  • Manon Stipulanti
چکیده

This paper is about counting the number of distinct (scattered) subwords occurring in a given word. More precisely, we consider the generalization of the Pascal triangle to binomial coefficients of words and the sequence (S(n))n≥0 counting the number of positive entries on each row. By introducing a convenient tree structure, we provide a recurrence relation for (S(n))n≥0. This leads to a connection with the 2-regular Stern–Brocot sequence and the sequence of denominators occurring in the Farey tree. Then we extend our construction to the Zeckendorf numeration system based on the Fibonacci sequence. Again our tree structure permits us to obtain recurrence relations for and the F -regularity of the corresponding sequence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Stirling Numbers and Hyper-Sums of Powers of Binomials Coefficients

We work with a generalization of Stirling numbers of the second kind related to the boson normal ordering problem (P. Blasiak et al.). We show that these numbers appear as part of the coefficients of expressions in which certain sequences of products of binomials, together with their partial sums, are written as linear combinations of some other binomials. We show that the number arrays formed ...

متن کامل

Large primes in generalized Pascal triangles

In this paper, after presenting the results of the generalization of Pascal triangle (using powers of base numbers), we examine some properties of the 112-based triangle, most of all regarding to prime numbers. Additionally, an effective implementation of ECPP method is presented which enables Magma computer algebra system to prove the primality of numbers with more than 1000 decimal digits. 1 ...

متن کامل

On a Family of Generalized Pascal Triangles Defined by Exponential Riordan Arrays

We introduce a family of number triangles defined by exponential Riordan arrays, which generalize Pascal’s triangle. We characterize the row sums and central coefficients of these triangles, and define and study a set of generalized Catalan numbers. We establish links to the Hermite, Laguerre and Bessel polynomials, as well as links to the Narayana and Lah numbers.

متن کامل

The Pascal-de Moivre Triangles*

The coefficients of the Pascal triangle were generalized in 1756 by de Moivre [5]. Each row of a Pascal triangle contains a sequence of numbers that are the coefficients of the power series expansion for the binary expression (l + x)^. The de Moivre formula [2], [4], [5], [6] derives the coefficients of the power series for the generalized expansion of (1 + x + x + • • • + x^"^). Thus, for inte...

متن کامل

Periodic Oscillations in the Analysis of Algorithms and Their Cancellations

A large number of results in analysis of algorithms contain fluctuations. A typical result might read “The expected number of . . . for large n behaves like log2 n + constant + delta(log2 n), where delta(x) is a periodic function of period one and mean zero.” Examples include various trie parameters, approximate counting, probabilistic counting, radix exchange sort, leader election, skip lists,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 340  شماره 

صفحات  -

تاریخ انتشار 2017