Continuous-wave, multimilliwatt, mid-infrared source tunable across 6.4-7.5 μm based on orientation-patterned GaAs.

نویسندگان

  • Kavita Devi
  • P G Schunemann
  • M Ebrahim-Zadeh
چکیده

We report a continuous-wave (cw) source of tunable mid-infrared radiation providing tens of milliwatt of output power in the 6460-7517 nm spectral range. The source is based on difference-frequency generation (DFG) in orientation-patterned (OP)-GaAs pumped by a Tm-fiber laser at 2010 nm and a 1064 nm-Yb-fiber-pumped cw optical parametric oscillator. Using a 25.7-mm-long OP-GaAs crystal, we have generated up to 51.1 mW of output power at 6790 nm, with >40  mW and >20  mW across 32% and 80% of the mid-infrared tuning range, respectively, which is to the best of our knowledge the highest tunable cw power generated in OP-GaAs in this spectral range. The DFG output at maximum power exhibits passive power stability better than 2.3% rms over more than 1 h and a frequency stability of 1.8 GHz over more than 1 min, in high spatial beam quality. The system and crystal performance at high pump powers have been studied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Broadly tunable single-frequency cw mid-infrared source with milliwatt-level output based on difference-frequency generation in orientation-patterned GaAs.

A narrow-linewidth mid-IR source based on difference-frequency generation of an amplified 1.5 microm diode laser and a cw Tm-doped fiber laser in orientation-patterned (OP) GaAs has been developed and evaluated for spectroscopic applications. The source can be tuned to any frequency in the 7.6-8.2 microm range with an output power of 0.5 mW. The measured characteristics of the OP-GaAs sample de...

متن کامل

Quasi-phase-matched gallium arsenide for versatile mid-infrared frequency conversion

Progress in processing low-loss quasi-phase-matched gallium arsenide crystals makes it possible to benefit from their excellent nonlinear properties in practical mid-infrared sources. This paper addresses both crystal growth aspects and the most recent device demonstrations. ©2012 Optical Society of America OCIS codes: (190.4400) Nonlinear optics, materials; (140.3070) Infrared and far-infrared...

متن کامل

High-power source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser.

We demonstrate a new source of frequency-tunable THz wave packets based on parametric down-conversion process in orientation-patterned GaAs (OP-GaAs) that produces muW-level THz average powers at the repetition rate of 100 MHz. The OP-GaAs crystal is pumped by a compact all-fiber femtosecond laser operating at the wavelength of 2 mum. Such combination of fiber laser and OP-GaAs technologies pro...

متن کامل

Mid-IR frequency comb source spanning 4.4-5.4 μm based on subharmonic GaAs optical parametric oscillator.

Broadband mid-IR output suitable for producing 1000-nm-wide frequency combs centered at 4.9 μm was achieved in a degenerate subharmonic optical parametric oscillator (OPO) based on 500-μm-long Brewster-angled orientation-patterned GaAs crystal. The OPO was synchronously pumped at 182 MHz repetition rate by 100 fs pulses from a Cr²⁺:ZnSe laser with the central wavelength of 2.45 μm and the avera...

متن کامل

Mid-infrared tunable, narrow-linewidth difference- frequency laser based on orientation-patterned gallium phosphide

We report on the first characterization of orientation-patterned gallium phosphide (OP-GaP) crystals used to generate narrow-linewidth, coherent mid-infrared (MIR) radiation at 5.85m by difference frequency generation (DFG) of continuous-wave (cw) Nd:YAG laser at 1064nm and diode-laser at 1301nm. By comparison of the experimental absolute MIR efficiency versus focusing to Gaussian beam DFG the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics letters

دوره 39 23  شماره 

صفحات  -

تاریخ انتشار 2014