Delayed Nerve Stimulation Promotes Axon-Protective Neurofilament Phosphorylation, Accelerates Immune Cell Clearance and Enhances Remyelination In Vivo in Focally Demyelinated Nerves
نویسندگان
چکیده
Rapid and efficient axon remyelination aids in restoring strong electrochemical communication with end organs and in preventing axonal degeneration often observed in demyelinating neuropathies. The signals from axons that can trigger more effective remyelination in vivo are still being elucidated. Here we report the remarkable effect of delayed brief electrical nerve stimulation (ES; 1 hour @ 20 Hz 5 days post-demyelination) on ensuing reparative events in a focally demyelinated adult rat peripheral nerve. ES impacted many parameters underlying successful remyelination. It effected increased neurofilament expression and phosphorylation, both implicated in axon protection. ES increased expression of myelin basic protein (MBP) and promoted node of Ranvier re-organization, both of which coincided with the early reappearance of remyelinated axons, effects not observed at the same time points in non-stimulated demyelinated nerves. The improved ES-associated remyelination was accompanied by enhanced clearance of ED-1 positive macrophages and attenuation of glial fibrillary acidic protein expression in accompanying Schwann cells, suggesting a more rapid clearance of myelin debris and return of Schwann cells to a nonreactive myelinating state. These benefits of ES correlated with increased levels of brain derived neurotrophic factor (BDNF) in the acute demyelination zone, a key molecule in the initiation of the myelination program. In conclusion, the tremendous impact of delayed brief nerve stimulation on enhancement of the innate capacity of a focally demyelinated nerve to successfully remyelinate identifies manipulation of this axis as a novel therapeutic target for demyelinating pathologies.
منابع مشابه
Modulation of the axonal microtubule cytoskeleton by myelinating Schwann cells.
The Trembler PNS myelin-deficient mutant mouse offers a unique model for the study of axon-glial interactions. Previous work in our laboratory on Trembler mouse sciatic nerve established that myelinating Schwann cells exert a profound effect on the underlying neuronal cytoskeleton. Demyelinated axon segments exhibited decreases in the rate of slow axonal transport, axonal caliber, and neurofila...
متن کاملAnti-myelin-associated glycoprotein antibodies alter neurofilament spacing.
Axon calibre is crucial to efficient impulse transmission in the peripheral nervous system. Neurofilament numbers determine gross axonal diameter, but intra-axonal distribution depends on the phosphorylation status of neurofilament sidearms. Myelin-associated glycoprotein (MAG) has been implicated in the signalling cascade controlling neurofilament phosphorylation and hence in the control of ax...
متن کاملBrief electrical stimulation accelerates axon regeneration in the peripheral nervous system and promotes sensory axon regeneration in the central nervous system.
Injured peripheral but not central nerves regenerate their axons but functional recovery is often poor. We demonstrate that prolonged periods of axon separation from targets and Schwann cell denervation eliminate regenerative capacity in the peripheral nervous system (PNS). A substantial delay of 4 weeks for all regenerating axons to cross a site of repair of sectioned nerve contributes to the ...
متن کاملPromotion of Remyelination by Sulfasalazine in a Transgenic Zebrafish Model of Demyelination
Most of the axons in the vertebrate nervous system are surrounded by a lipid-rich membrane called myelin, which promotes rapid conduction of nerve impulses and protects the axon from being damaged. Multiple sclerosis (MS) is a chronic demyelinating disease of the CNS characterized by infiltration of immune cells and progressive damage to myelin and axons. One potential way to treat MS is to enh...
متن کاملIncreased mitochondrial content in remyelinated axons: implications for multiple sclerosis.
Mitochondrial content within axons increases following demyelination in the central nervous system, presumably as a response to the changes in energy needs of axons imposed by redistribution of sodium channels. Myelin sheaths can be restored in demyelinated axons and remyelination in some multiple sclerosis lesions is extensive, while in others it is incomplete or absent. The effects of remyeli...
متن کامل