Newton's method for the Navier-Stokes equations with finite-element initial guess of stokes equations

نویسندگان

  • Sang Dong Kim
  • Yong Hun Lee
  • Byeong-Chun Shin
چکیده

K e y w o r d s N a v i e r S t o k e s equations, Stokes equations, Convergence, Finite element method, Newton's method. 1. I N T R O D U C T I O N In the course of so lv ing non l inear equa t ions like Navie r -S tokes equa t ions , one m a y e m p l o y N e w t o n and Newtonl ike m e t h o d s combin ing wi th o the r m e t h o d s (see, for example , [1-3], etc.) . I t is well known t h a t i f t he in i t ia l guess is chosen nea rby the exac t so lu t ion of t h e g iven non l inea r different ial equa t ions the q u a d r a t i c convergence is gua ran t eed (see [4]). I t is known t h a t t he so lu t ion of Stokes equa t ions m a y be chosen as the ini t ia l guess for N e w t o n ' s m e t h o d for Nav ie r -S tokes equa t ions This work was supported by Korea Research Foundation Grant (KRF-2002-070-C00014). 0898-1221/06/$ see front matter (~) 2006 Elsevier Ltd. All rights reserved. Typeset by .A~tS-TF_X doi: 10.1016/j.camwa. 2006.03.007 806 s.D. KIM et al. which we consider now with zero boundary condition for the ve loc i t y u = ( u l , u 2 ) t and the mean-zero condition for the pres sure p as follows: ~ A u + (uV)u + Vp = f, in f~, V u = 0, in t2, u = 0, on 0a , (1.1)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization with the time-dependent Navier-Stokes equations as constraints

In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...

متن کامل

A Comparison of Some ASPIN Algorithms

starting from an initial guess u ∈ <. Here F = (F1, . . . , Fn) , Fi = Fi(u1, . . . , un) are given functions which are often the results of a discretization of some nonlinear partial differential equations, such as the Navier-Stokes equations for fluid flows, using finite element or finite difference methods. For such a problem, some parallel nonlinear additive Schwarz preconditioned inexact N...

متن کامل

Scientific Flow Field Simulation of Cruciform Missiles Through the Thin Layer Navier Stokes Equations

The thin-layer Navier-Stokes equations are solved for two complete missile configurations on an IBM 3090-200 vectro-facility supercomputer. The conservation form of the three-dimensional equations, written in generalized coordinates, are finite differenced and solved on a body-fitted curvilinear grid system developed in conjunction with the flowfield solver. The numerical procedure is based on ...

متن کامل

Optimal error bounds for two-grid schemes applied to the Navier-Stokes equations

We consider two-grid mixed-finite element schemes for the spatial discretization of the incompressible Navier-Stokes equations. A standard mixed-finite element method is applied over the coarse grid to approximate the nonlinear Navier-Stokes equations while a linear evolutionary problem is solved over the fine grid. The previously computed Galerkin approximation to the velocity is used to linea...

متن کامل

Two-level Method Based on Newton Iteration for the Stationary Navier-Stokes Equations

This paper propose and analyze the two-level stabilized finite element method for the stationary Navier-Stokes equations based on Newon iteration. This algorithm involves solving one small, nonlinear coarse mesh with mesh size H and two linear problems on the fine mesh with mesh size h. Based on local Gauss integration and the quadratic equal-order triangular element ,the two-level stabilized m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Mathematics with Applications

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2006