A Rigidity Theorem for Lagrangian Deformations
نویسنده
چکیده
We consider deformations of singular Lagrangian varieties in symplectic spaces. We prove that a Lagrangian deformation of a Lagrangian complete intersection is analytically rigid provided that this is the case infinitesimally. This result solves a problem posed by Colin de Verdière concerning Lagrangian curves. Finally, we prove the coherence of the direct image sheaves of relative infinitesimal Lagrangian deformations.
منابع مشابه
Rigid and Complete Intersection Lagrangian Singularities
In this article we prove a rigidity theorem for lagrangian singularities by studying the local cohomology of the lagrangian de Rham complex that was introduced in [SvS03]. The result can be applied to show the rigidity of all open swallowtails of dimension ≥ 2. In the case of lagrangian complete intersection singularities the lagrangian de Rham complex turns out to be perverse. We also show tha...
متن کاملCohomology and Deformations of Algebraic Structures
Gerstenhaber has recently initiated a theory of deformations of associative algebras [4]. The methods and results of Gerstenhaber's work are strikingly similar to those in the theory of deformations of complex analytic structures on compact manifolds. In this note we shall indicate how some of Gerstenhaber's ideas can be reformulated within a framework designed to exploit this similarity, that ...
متن کاملDeformations of Asymptotically Conical Special Lagrangian Submanifolds
The naive approach is to parametrize these deformations as the zero-set of a “mean curvature operator”, then study them using the implicit function theorem. However, this entails a good understanding of the Jacobi operator of the initial submanifold Σ, which in general is not possible. The work of Oh and, more recently, of McLean (cfr. [Oh], [ML]) shows that, in the “right” geometric context, t...
متن کاملComputation of intra-operative brain shift using dynamic relaxation.
Many researchers have proposed the use of biomechanical models for high accuracy soft organ non-rigid image registration, but one main problem in using comprehensive models is the long computation time required to obtain the solution. In this paper we propose to use the Total Lagrangian formulation of the Finite Element method together with Dynamic Relaxation for computing intra-operative organ...
متن کاملLinear Weingarten hypersurfaces in a unit sphere
In this paper, by modifying Cheng-Yau$'$s technique to complete hypersurfaces in $S^{n+1}(1)$, we prove a rigidity theorem under the hypothesis of the mean curvature and the normalized scalar curvature being linearly related which improve the result of [H. Li, Hypersurfaces with constant scalar curvature in space forms, {em Math. Ann.} {305} (1996), 665--672].
متن کامل