Inhibition of ileal bile acid transport and reduced atherosclerosis in apoE-/- mice by SC-435.

نویسندگان

  • B Ganesh Bhat
  • Stephen R Rapp
  • Judith A Beaudry
  • Nida Napawan
  • Dustie N Butteiger
  • Kerri A Hall
  • Christopher L Null
  • Yi Luo
  • Bradley T Keller
چکیده

Blocking intestinal bile acid absorption by inhibiting the apical sodium codependent bile acid transporter (ASBT) is a target for increasing hepatic bile acid synthesis and reducing plasma LDL cholesterol. SC-435 was identified as a potent inhibitor of ASBT (IC50 = 1.5 nM) in cells transfected with the human ASBT gene. Dietary administration of 3 mg/kg to 30 mg/kg SC-435 to apolipoprotein E-/- (apoE-/-) mice increased fecal bile acid excretion by >2.5-fold. In vivo inhibition of ASBT also resulted in significant increases of hepatic mRNA levels for cholesterol 7alpha-hydroxylase and HMG-CoA reductase. Administration of 10 mg/kg SC-435 for 12 weeks to apoE-/- mice lowered serum total cholesterol by 35% and reduced aortic root lesion area by 65%. Treatment of apoE-/- mice also resulted in decreased expression of ileal bile acid binding protein and hepatic nuclear hormone receptor small heterodimer partner, direct target genes of the farnesoid X receptor (FXR), suggesting a possible role of FXR in SC-435 modulation of cholesterol homeostasis. In dogs, SC-435 treatment reduced serum total cholesterol levels by </=12% and, in combination with atorvastatin treatment, caused an additional reduction of 25%. These results suggest that specific inhibition of ASBT is a novel therapeutic approach for treatment of hypercholesterolemia resulting in a decreased risk for atherosclerosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of both the apical sodium-dependent bile acid transporter and HMG-CoA reductase markedly enhances the clearance of LDL apoB.

Discovery of the ileal apical sodium-dependent bile acid transporter (ASBT) permitted development of specific inhibitors of bile acid reabsorption, potentially a new class of cholesterol-lowering agents. In the present study, we tested the hypothesis that combining the novel ASBT inhibitor, SC-435, with the HMG-CoA reductase inhibitor, atorvastatin, would potentiate reductions in LDL cholestero...

متن کامل

Apical sodium-dependent bile acid transporter upregulation is associated with necrotizing enterocolitis.

Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency of premature infants. Previously, we showed that luminal bile acids (BAs) are increased and correlated with disease development and that the apical sodium-dependent BA transporter (ASBT), which transports BAs from the ileal lumen into enterocytes, is upregulated in rats with NEC. We hypothesized that intraenterocyte, ...

متن کامل

1-[4-[4[(4R,5R)-3,3-Dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-1,1-dioxido-1-benzothiepin-5-yl]phenoxy]butyl]-4-aza-1-azoniabicyclo[2.2.2]octane methanesulfonate (SC-435), an ileal apical sodium-codependent bile acid transporter inhibitor alters hepatic cholesterol metabolism and lowers plasma low-density lipoprotein-cholesterol concentrations in guinea pigs.

Male Hartley guinea pigs (10/group) were assigned either to a control diet (no drug treatment) or to diets containing 0.4, 2.2, or 7.3 mg/day of an ileal apical sodium-codependent bile acid transporter (ASBT) inhibitor, 1-[4-[4[(4R,5R)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-1,1-dioxido-1-benzothiepin-5-yl]phenoxy]butyl]-4-aza-1-azoniabicyclo[2.2.2] octane methanesulfonate (S...

متن کامل

Cholesterol 7alpha-hydroxylase deficiency in mice on an APOE*3-Leiden background increases hepatic ABCA1 mRNA expression and HDL-cholesterol.

OBJECTIVE High-density lipoprotein (HDL) plays a key role in protection against development of atherosclerosis by reducing inflammation, protecting against LDL oxidation, and promoting reverse cholesterol transport from peripheral tissues to the liver for secretion into bile. Cholesterol 7alpha-hydroxylase (Cyp7a1) catalyzes the rate-limiting step in the intrahepatic conversion of cholesterol t...

متن کامل

Inhibition of the apical sodium-dependent bile acid transporter reduces LDL cholesterol and apoB by enhanced plasma clearance of LDL apoB.

OBJECTIVE Cloning of the ileal apical sodium-dependent bile acid transporter (ASBT) has identified a new pharmacological target for the modulation of plasma lipoproteins. The objective of this study was to determine whether a novel, specific, minimally absorbed ASBT inhibitor (SC-435) decreases LDL cholesterol through the alteration of plasma apoB kinetics. METHODS AND RESULTS Miniature pigs ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of lipid research

دوره 44 9  شماره 

صفحات  -

تاریخ انتشار 2003