Dietary fructooligosaccharides increase intestinal permeability in rats.
نویسندگان
چکیده
We showed previously that fructooligosaccharides (FOS) decrease the resistance to salmonella infection in rats. However, the mechanism responsible for this effect is unclear. Therefore, we examined whether dietary FOS affects intestinal permeability before and after infection with Salmonella enterica serovar Enteritidis. Male Wistar rats were fed restricted quantities of a purified diet that mimicked the composition of a Western human diet. The diet was supplemented with 60 g/kg cellulose (control) or 60 g/kg FOS and with 4 mmol/kg of the intestinal permeability marker chromium EDTA (CrEDTA) (n = 8 or 10). After an adaptation period of 2 wk, rats were orally infected with 10(8) colony-forming units (cfu) of S. enteritidis. Mucin concentrations in intestinal contents and mucosa were measured fluorimetrically, as markers of mucosal irritation. Intestinal permeability was determined by measuring urinary CrEDTA excretion. Translocation of salmonella was quantified by analysis of urinary nitric oxide metabolites with time. Before infection, FOS increased mucosal lactobacilli and enterobacteria in cecum and colon, but not in the ileum. However, FOS increased cytotoxicity of fecal water and intestinal permeability. Moreover, FOS increased fecal mucin excretion and mucin concentrations in cecal and colonic contents, and in cecal mucosa before infection. After infection, mucin excretion and intestinal permeability in the FOS groups increased even further in contrast to the control group. In addition, FOS increased translocation of salmonella to extraintestinal sites. Thus, FOS impairs the intestinal barrier in rats, as indicated by higher intestinal permeability. Whether these results can be extrapolated to humans requires further investigation.
منابع مشابه
Nutrient Physiology, Metabolism, and Nutrient-Nutrient Interactions Dietary Fructooligosaccharides Affect Intestinal Barrier Function in Healthy Men
In contrast to most expectations, we showed previously that dietary fructooligosaccharides (FOS) stimulate intestinal colonization and translocation of invasive Salmonella enteritidis in rats. Even before infection, FOS increased the cytotoxicity of fecal water, mucin excretion, and intestinal permeability. In the present study, we tested whether FOS has these effects in humans. A double-blind,...
متن کاملDietary fructooligosaccharides affect intestinal barrier function in healthy men.
In contrast to most expectations, we showed previously that dietary fructooligosaccharides (FOS) stimulate intestinal colonization and translocation of invasive Salmonella enteritidis in rats. Even before infection, FOS increased the cytotoxicity of fecal water, mucin excretion, and intestinal permeability. In the present study, we tested whether FOS has these effects in humans. A double-blind,...
متن کاملDietary fat and bile juice, but not obesity, are responsible for the increase in small intestinal permeability induced through the suppression of tight junction protein expression in LETO and OLETF rats
BACKGROUND An increase in the intestinal permeability is considered to be associated with the inflammatory tone and development in the obesity and diabetes, however, the pathogenesis of the increase in the intestinal permeability is poorly understood. The present study was performed to determine the influence of obesity itself as well as dietary fat on the increase in intestinal permeability. ...
متن کاملDietary calcium decreases but short-chain fructo-oligosaccharides increase colonic permeability in rats.
An increased intestinal permeability is associated with several diseases. Nutrition can influence gut permeability. Previously, we showed that dietary Ca decreases whereas dietary short-chain fructo-oligosaccharides (scFOS) increase intestinal permeability in rats. However, it is unknown how and where in the gastrointestinal tract Ca and scFOS exert their effects. Rats were fed a Western low-Ca...
متن کاملThe protective effect of supplemental calcium on colonic permeability depends on a calcium phosphate-induced increase in luminal buffering capacity.
An increased intestinal permeability is associated with several diseases. Previously, we have shown that dietary Ca decreases colonic permeability in rats. This might be explained by a calcium-phosphate-induced increase in luminal buffering capacity, which protects against an acidic pH due to microbial fermentation. Therefore, we investigated whether dietary phosphate is a co-player in the effe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of nutrition
دوره 135 4 شماره
صفحات -
تاریخ انتشار 2005