Discharge of monkey nucleus reticularis tegmenti pontis (NRTP) neurons changes during saccade adaptation
نویسندگان
چکیده
Saccade accuracy is maintained by adaptive mechanisms that continually modify saccade amplitude to reduce dysmetria. Previous studies suggest that adaptation occurs upstream of the caudal fastigial nucleus (CFN), the output of the oculomotor cerebellar vermis but downstream from the superior colliculus (SC). The nucleus reticularis tegmenti pontis (NRTP) is a major source of afferents to both the oculomotor vermis and the CFN and in turn receives direct input from the SC. Here we examine the activity of NRTP neurons in four rhesus monkeys during behaviorally induced changes in saccade amplitude to assess whether their discharge might reveal adaptation mechanisms that mediate changes in saccade amplitude. During amplitude decrease adaptation (average -22%), the gradual reduction of saccade amplitude was accompanied by an increase in the number of spikes in the burst of 19/34 neurons (56%) and no change for 15 neurons (44%). For the neurons that increased their discharge, the additional spikes were added at the beginning of the saccadic burst and adaptation also delayed the peak-firing rate in some neurons. Moreover, after amplitude reduction, the movement fields changed shape in all 15 open field neurons tested. Our data show that saccadic amplitude reduction affects the number of spikes in the burst of more than half of NRTP neurons tested, primarily by increasing burst duration not frequency. Therefore, adaptive
منابع مشابه
Discharge of monkey nucleus reticularis tegmenti pontis neurons changes during saccade adaptation.
Saccade accuracy is maintained by adaptive mechanisms that continually modify saccade amplitude to reduce dysmetria. Previous studies suggest that adaptation occurs upstream of the caudal fastigial nucleus (CFN), the output of the oculomotor cerebellar vermis but downstream from the superior colliculus (SC). The nucleus reticularis tegmenti pontis (NRTP) is a major source of afferents to both t...
متن کاملSingle-unit activity in the primate nucleus reticularis tegmenti pontis related to vergence and ocular accommodation.
1. In the present study we used single-unit recording techniques in alert rhesus monkeys to investigate a precerebellar nucleus, the nucleus reticularis tegmenti pontis (NRTP), for neurons related to vergence and ocular accommodation. 2. In the medial NRTP, we identified 32 cells with activity that linearly increased with increases in the amplitude of the near response and 33 cells with activit...
متن کاملEffect of pharmacological inactivation of nucleus reticularis tegmenti pontis on saccadic eye movements in the monkey.
The superior colliculus (SC) provides signals for the generation of saccades via a direct pathway to the brain stem burst generator (BG). In addition, it sends saccade-related activity to the BG indirectly through the cerebellum via a relay in the nucleus reticularis tegmenti pontis (NRTP). Lesions of the oculomotor vermis, lobules VIc and VII, and inactivation of the caudal fastigial nucleus, ...
متن کاملSaccade-related, long-lead burst neurons in the monkey rostral pons.
The paramedian pontine reticular formation contains the premotoneuronal cell groups that constitute the saccadic burst generator and control saccadic eye movements. Despite years of study and numerous investigations, the rostral portion of this area has received comparatively little attention, particularly the cell type known as long-lead burst neurons (LLBNs). Several hypotheses about the func...
متن کاملGaze-related response properties of DLPN and NRTP neurons in the rhesus macaque.
The dorsolateral pontine nucleus (DLPN) and nucleus reticularis tegmenti pontis (NRTP) are basilar pontine nuclei important for control of eye movements. The aim of this study was to compare the response properties of neurons in DLPN and rostral NRTP (rNRTP) during visual, oculomotor, and vestibular testing. We tested 51 DLPN neurons that were modulated during smooth pursuit (23/51) or during m...
متن کامل