Pathogenesis of RON receptor tyrosine kinase in cancer cells: activation mechanism, functional crosstalk, and signaling addiction
نویسندگان
چکیده
The RON receptor tyrosine kinase, a member of the MET proto-oncogene family, is a pathogenic factor implicated in tumor malignancy. Specifically, aberrations in RON signaling result in increased cancer cell growth, survival, invasion, angiogenesis, and drug resistance. Biochemical events such as ligand binding, receptor overexpression, generation of structure-defected variants, and point mutations in the kinase domain contribute to RON signaling activation. Recently, functional crosstalk between RON and signaling proteins such as MET and EFGR has emerged as an additional mechanism for RON activation, which is critical for tumorigenic development. The RON signaling crosstalk acts either as a regulatory feedback loop that strengthens or enhances tumorigenic phenotype of cancer cells or serves as a signaling compensatory pathway providing a growth/survival advantage for cancer cells to escape targeted therapy. Moreover, viral oncoproteins derived from Friend leukemia or Epstein-Barr viruses interact with RON to drive viral oncogenesis. In cancer cells, RON signaling is integrated into cellular signaling network essential for cancer cell growth and survival. These activities provide the molecular basis of targeting RON for cancer treatment. In this review, we will discuss recent data that uncover the mechanisms of RON activation in cancer cells, review evidence of RON signaling crosstalk relevant to cancer malignancy, and emphasize the significance of the RON signaling addiction by cancer cells for tumor therapy. Understanding aberrant RON signaling will not only provide insight into the mechanisms of tumor pathogenesis, but also lead to the development of novel strategies for molecularly targeted cancer treatment.
منابع مشابه
Crosstalk between RON and androgen receptor signaling in the development of castration resistant prostate cancer
Castrate-resistant prostate cancer (CRPC) is the fatal form of prostate cancer. Although reactivation of androgen receptor (AR) occurs following androgen deprivation, the precise mechanism involved is unclear. Here we show that the receptor tyrosine kinase, RON alters mechanical properties of cells to influence epithelial to mesenchymal transition and functions as a transcription factor to diff...
متن کاملFMS-like Tyrosine Kinase-3 Mutation in a Child with Standard-risk ALL and Normal Karyotype
FMS-like tyrosine kinase-3 is a receptor tyrosine kinase expressed by immature hematopoietic cells and is important for the normal development of stem cells and the immune system. Mutations of FMS-like tyrosine kinase-3 have been detected in about 30% of patients with acute myelogenous leukemia and a small number of patients with acute lymphoblastic leukemia. The FMS-like tyrosine kinase-3 muta...
متن کاملTumor and Stem Cell Biology Ron Kinase Transphosphorylation Sustains MET Oncogene Addiction
Receptors for the scatter factors HGF and MSP that are encoded by the MET and RON oncogenes are key players in invasive growth. Receptor cross-talk betweenMet and Ron occurs. Amplification of theMET oncogene results in kinase activation, deregulated expression of an invasive growth phenotype, and addiction to MET oncogene signaling (i.e., dependency on sustained Met signaling for survival and p...
متن کاملAn unusual function of RON receptor tyrosine kinase as a transcriptional regulator in cooperation with EGFR in human cancer cells.
Homodimerization of RON (MST1R), a receptor tyrosine kinase, usually occurs in cells stimulated by a ligand and leads to the downstream activation of signaling pathways. Here we report that bladder cancer cells, in response to physiological stress, use an alternative mechanism for signaling activation. Time-course studies indicated that RON migrated directly from the membrane to the nucleus of ...
متن کاملRon kinase transphosphorylation sustains MET oncogene addiction.
Receptors for the scatter factors HGF and MSP that are encoded by the MET and RON oncogenes are key players in invasive growth. Receptor cross-talk between Met and Ron occurs. Amplification of the MET oncogene results in kinase activation, deregulated expression of an invasive growth phenotype, and addiction to MET oncogene signaling (i.e., dependency on sustained Met signaling for survival and...
متن کامل