Computational studies of thermoelectric MHD driven liquid lithium flow in metal trenches
نویسندگان
چکیده
The LiMIT system (Lithium/Metal Infused Trenches) is an innovative plasma-facing component for tokamak divertors, recently proposed at the University of Illinois. Thanks to the coupling of two metals having different Seebeck coefficients, the device is able to generate internal thermoelectric currents as a response to an incoming heat flux from the plasma. One of the two metals is liquid lithium and the second metal is a solid composing the trenches (tungsten, or molybdenum, or stainless steel, etc.). Together with the high toroidal magnetic field, the liquid lithium is propelled by a JxB electrodynamic force inside the solid trenches. In the present work we present a numerical characterization of the device. The diffusion–advection of heat is solved together with the Navier–Stokes equations forced by the JxB electrodynamic force, comprising the thermoelectric contribution. We report parametric plots to show the influence of the toroidal magnetic field and of the plasma heat flux. It is found that the average flow imiter and divertor lasma facing component velocity of the liquid lithium peaks at a critical magnetic field, always lower than 1.0 T, and then decreases with an inverse law in the range of tokamak-relevant fields. The flow velocity of the lithium increases with a square-root law versus an increasing heat flux. The heat transfer coefficient of the cooling channels is parametrically investigated, revealing that coefficients higher than >4000 W/m2 K are needed for the device in order to withstand heat fluxes of 10 MW/m2. © 2014 Elsevier B.V. All rights reserved.
منابع مشابه
Vertical flow in the Thermoelectric Liquid Metal Plasma Facing Structures (TELS) facility at Illinois
Article history: Available online xxxx Flowing liquid metal PFCs may offer a solution to the issues faced by solid divertor materials in tokamak plasmas. The Liquid–Metal Infused Trenches (LiMIT) concept of Illinois Ruzic et al. (2011) is a liquid metal plasma facing structure which employs thermoelectric magnetohydrodynamic (TEMHD) effects to selfpropel lithium through a series of trenches. Th...
متن کاملLithium–metal infused trenches (LiMIT) for heat removal in fusion devices
Observation of liquid lithium flow in metal trenches has been made using a lithium–metal infused trench (LiMIT) tile and is reported here. The flow is self-pumping and uses thermoelectric magnetohydrodynamics to remove heated lithium and replenish it at a lower temperature. Flow velocities have been measured and compared with theoretical predictions. (Some figures in this article are in colour ...
متن کاملIrreversibility Analysis of MHD Buoyancy-Driven Variable Viscosity Liquid Film along an Inclined Heated Plate Convective Cooling
Analysis of intrinsic irreversibility and heat transfer in a buoyancy-driven changeable viscosity liquid along an incline heated wall with convective cooling taking into consideration the heated isothermal and isoflux wall is investigated. By Newton’s law of cooling, we assumed the free surface exchange heat with environment and fluid viscosity is exponentially dependent on temperature. Appropr...
متن کاملThermocapillary and thermoelectric effects in liquid lithium plasma facing components
Recent experiments have renewed interest in the use of liquid lithium as a plasma facing component (PFC). The liquid metal surface will experience a number of effects which are considered in the present work with simple analytical and more complete computational models. These include the thermal response under fusion relevant heat loads causing thermocapillary and thermoelectric effects. Analyt...
متن کاملNumerical Study of turbulent free convection of liquid metal with constant and variable properties in the presence of magnetic field
In this research, turbulent MHD convection of liquid metal with constant and variable properties is investigated numerically. The finite volume method is applied to model the fluid flow and natural convection heat transfer in a square cavity. The fluid flow and heat transfer were simulated and compared for two cases constant and variable properties. It is observed that for the case variable pro...
متن کامل