Using GRACE Satellite Gravimetry for Assessing Large-Scale Hydrologic Extremes
نویسندگان
چکیده
Global assessment of the spatiotemporal variability in terrestrial total water storage anomalies (TWSA) in response to hydrologic extremes is critical for water resources management. Using TWSA derived from the gravity recovery and climate experiment (GRACE) satellites, this study systematically assessed the skill of the TWSA-climatology (TC) approach and breakpoint (BP) detection method for identifying large-scale hydrologic extremes. The TC approach calculates standardized anomalies by using the mean and standard deviation of the GRACE TWSA corresponding to each month. In the BP detection method, the empirical mode decomposition (EMD) is first applied to identify the mean return period of TWSA extremes, and then a statistical procedure is used to identify the actual occurrence times of abrupt changes (i.e., BPs) in TWSA. Both detection methods were demonstrated on basin-averaged TWSA time series for the world’s 35 largest river basins. A nonlinear event coincidence analysis measure was applied to cross-examine abrupt changes detected by these methods with those detected by the Standardized Precipitation Index (SPI). Results show that our EMD-assisted BP procedure is a promising tool for identifying hydrologic extremes using GRACE TWSA data. Abrupt changes detected by the BP method coincide well with those of the SPI anomalies and with documented hydrologic extreme events. Event timings obtained by the TC method were ambiguous for a number of river basins studied, probably because the GRACE data length is too short to derive long-term climatology at this time. The BP approach demonstrates a robust wet-dry anomaly detection capability, which will be important for applications with the upcoming GRACE Follow-On mission.
منابع مشابه
Water Cycle and Climate Signals in Africa Observed by Satellite Gravimetry
The availability of hydrologic data is an important step for hydrological modeling and water resource management in the world. Unfortunately, the in situ observations with the right characteristics are very sparse globally, particularly in Africa. Understanding the climate variability of Africa and its prominent role as the heat engine of the global climate system is one of the key goals in cli...
متن کاملEstimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE)
[1] The satellite Gravity Recovery and Climate Experiment (GRACE) provides data describing monthly changes in the geoid, which are closely related to changes in vertically integrated terrestrial water storage. Unlike conventional point or gridded hydrologic measurements, such as those from rain gauges, stream gauges, rain radars, and radiometric satellite images, GRACE data are sets of Stokes c...
متن کاملStatistical downscaling of GRACE gravity satellite-derived groundwater level data
With the continued threat from climate change, population growth and followed by increasing water demand, the need for hydrological data with high spatial resolution and proper time coverage to be felt more than ago. Therefore, having data such as terrestrial water storage changes and groundwater level changes with high resolution spatial helps to plan and make decisions for water resource mana...
متن کاملStatistics of extremes in hydrology
The statistics of extremes have played an important role in engineering practice for water resources design and management. How recent developments in the statistical theory of extreme values can be applied to improve the rigor of hydrologic applications and to make such analyses more physically meaningful is the central theme of this paper. Such methodological developments primarily relate to ...
متن کاملDetecting hydrologic deformation using GRACE and GPS
[1] Hydrological processes cause variations in gravitational potential and surface deformations, both of which are detectable using space geodetic techniques. We computed elastic deformation using continental water load estimates derived from the Gravity Recovery and Climate Experiment and compared to 3D deformation estimated from GPS observations. The agreement is very good in areas where larg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017