Statistical thermodynamics for chain molecules with simple RNA tertiary contacts.
نویسندگان
چکیده
A statistical thermodynamic model is developed for chain molecules with simple RNA tertiary contacts. The model, which accounts for the excluded volume effect and the nonadditivity in the free energy, enables reliable predictions for the conformational entropy and partition function for simple tertiary folds. Illustrative applications are made to conformational transitions involving simple tertiary contacts. The model can predict the interplay between the secondary and the tertiary interactions in the conformational changes. Though the present form of the theory is tested and validated in a two-dimensional lattice model, the methodology, which is developed based on a general graphical representation for chain conformations, is applicable to any off-lattice chain representations. Moreover, the analytical formulation of the method makes possible the systematic development of the theory for more complex tertiary structures.
منابع مشابه
A three-dimensional statistical mechanical model of folding double-stranded chain molecules
Based on a graphical representation of intrachain contacts, we have developed a new three-dimensional model for the statistical mechanics of double-stranded chain molecules. The theory has been tested and validated for the cubic lattice chain conformations. The statistical mechanical model can be applied to the equilibrium folding thermodynamics of a large class of chain molecules, including pr...
متن کاملPredicting loop-helix tertiary structural contacts in RNA pseudoknots.
Tertiary interactions between loops and helical stems play critical roles in the biological function of many RNA pseudoknots. However, quantitative predictions for RNA tertiary interactions remain elusive. Here we report a statistical mechanical model for the prediction of noncanonical loop-stem base-pairing interactions in RNA pseudoknots. Central to the model is the evaluation of the conforma...
متن کاملPrinciples of RNA compaction: insights from the equilibrium folding pathway of the P4-P6 RNA domain in monovalent cations.
Counterions are required for RNA folding, and divalent metal ions such as Mg(2+) are often critical. To dissect the role of counterions, we have compared global and local folding of wild-type and mutant variants of P4-P6 RNA derived from the Tetrahymena group I ribozyme in monovalent and in divalent metal ions. A remarkably simple picture of the folding thermodynamics emerges. The equilibrium f...
متن کاملQuantitative tests of a reconstitution model for RNA folding thermodynamics and kinetics.
Decades of study of the architecture and function of structured RNAs have led to the perspective that RNA tertiary structure is modular, made of locally stable domains that retain their structure across RNAs. We formalize a hypothesis inspired by this modularity-that RNA folding thermodynamics and kinetics can be quantitatively predicted from separable energetic contributions of the individual ...
متن کاملThermodynamic and kinetic aspects of RNA pulling experiments.
Recent single-molecule pulling experiments have shown how it is possible to manipulate RNA molecules using laser tweezers. In this article we investigate a minimal model for the experimental setup which includes an RNA molecule connected to two polymers (handles) and a bead trapped in the optical potential and attached to one of the handles. We start by considering the case of small single-doma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 122 9 شماره
صفحات -
تاریخ انتشار 2005