Apoptosis-inducing factor triggered by poly(ADP-ribose) polymerase and Bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia.
نویسندگان
چکیده
Delayed neuronal cell death occurring hours after reperfusion is a hallmark of ischemic stroke and a primary target for neuroprotective strategies. In the present study, we investigated whether apoptosis-inducing factor (AIF), a caspase-independent proapoptotic protein, is responsible for neuronal cell death after glutamate toxicity and oxygen-glucose deprivation (OGD) in vitro and after experimental stroke in vivo. AIF translocated to the nucleus in which it colocalized with DNA fragmentation and nuclear apoptotic morphology after exposure to glutamate or OGD in cultured neurons or after transient middle cerebral artery occlusion (MCAo) in mice. Small inhibitory RNA-mediated downregulation of AIF reduced glutamate- and OGD-induced neuronal apoptosis by 37 and 60%, respectively (p < 0.01). Moreover, Harlequin mutant mice, which express AIF at low levels (approximately 20% of wild-type mice), displayed smaller infarct volumes (-43%; p < 0.03) and showed dramatically reduced cell death in the ischemic penumbra after 45 min of MCAo compared with wild-type littermates. Inhibition of poly(ADP-ribose) polymerase and Bid reduced nuclear AIF translocation. These results provide the first evidence for a causal role of AIF in ischemic neuronal cell death. Therefore, caspase-independent cell death signaling may provide a promising novel target for therapeutic interventions in cerebrovascular diseases.
منابع مشابه
Peroxiredoxin 2 battles poly(ADP-ribose) polymerase 1- and p53-dependent prodeath pathways after ischemic injury.
BACKGROUND AND PURPOSE Ischemic/reperfusion neuronal injury is characterized by accumulation of reactive oxygen species and oxidative DNA damage, which can trigger cell death by various signaling pathways. Two of these modes of death include poly(ADP-ribose) polymerase 1-mediated death or p53- and Bax-mediated apoptosis. The present study tested the hypothesis that peroxiredoxin 2 (PRX2) attenu...
متن کاملEndonuclease G does not play an obligatory role in poly(ADP-ribose) polymerase-dependent cell death after transient focal cerebral ischemia.
Activation of poly(ADP-ribose) polymerase (PARP) and subsequent translocation of apoptosis-inducing factor contribute to caspase-independent neuronal injury from N-methyl-d-aspartate, oxygen-glucose deprivation, and ischemic stroke. Some studies have implicated endonuclease G in the DNA fragmentation associated with caspase-independent cell death. Here, we compared wild-type and endonuclease G ...
متن کاملTUMOR NECROSIS FACTOR-LIKE WEAK INDUCER OF APOPTOSIS (TWEAK) AND FIBROBLAST GROWTH FACTOR- INDUCIBLE 14 (Fn14) MEDIATE CEREBRAL ISCHEMIA-INDUCED POLY(ADP-RIBOSE) POLYMERASE-1 ACTIVATION AND NEURONAL DEATH
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor Fibroblast growth factor-inducible 14 (Fn14) are expressed in neurons. Here we demonstrate that TWEAK induces a dose-dependent increase in neuronal death and that this effect is independent of TNF-α and mediated by NF-κB pathway activation. Incubation with TWEAK induces apoptotic cell death in wild-type (Wt) but not i...
متن کاملBID Mediates Oxygen-Glucose Deprivation-Induced Neuronal Injury in Organotypic Hippocampal Slice Cultures and Modulates Tissue Inflammation in a Transient Focal Cerebral Ischemia Model without Changing Lesion Volume
The BH3 interacting-domain death agonist (BID) is a pro-apoptotic protein involved in death receptor-induced and mitochondria-mediated apoptosis. Recently, it has also been suggested that BID is involved in the regulation of inflammatory responses in the central nervous system. We found that BID deficiency protected organotypic hippocampal slice cultures in vitro from neuronal injury induced by...
متن کاملBID mediates neuronal cell death after oxygen/ glucose deprivation and focal cerebral ischemia.
Mitochondria and cytochrome c release play a role in the death of neurons and glia after cerebral ischemia. In the present study, we investigated whether BID, a proapoptotic promoter of cytochrome c release and caspase 8 substrate, was expressed in brain, activated after an ischemic insult in vivo and in vitro, and contributed to ischemic cell death. We detected BID in the cytosol of mouse brai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 44 شماره
صفحات -
تاریخ انتشار 2005