The Complexity of Enriched Mu-Calculi

نویسندگان

  • Piero A. Bonatti
  • Carsten Lutz
  • Aniello Murano
  • Moshe Y. Vardi
چکیده

Probabilistic timed automata are an extension of timed automata with discrete probability distributions. We consider model-checking algorithms for the subclasses of probabilistic timed automata which have one or two clocks. Firstly, we show that Pctl probabilistic model-checking problems (such as determining whether a set of target states can be reached with probability at least 0.99 regardless of how nondeterminism is resolved) are PTIME-complete for one-clock probabilistic timed automata, and are EXPTIME-complete for probabilistic timed automata with two clocks. Secondly, we show that, for one-clock probabilistic timed automata, the model-checking problem for the probabilistic timed temporal logic Ptctl is EXPTIME-complete. However, the model-checking problem for the subclass of Ptctl which does not permit both punctual timing bounds, which require the occurrence of an event at an exact time point, and comparisons with probability bounds other than 0 or 1, is PTIME-complete for one-clock probabilistic timed

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalar and Vectorial mu-calculus with Atoms

We study an extension of modal mu-calculus to sets with atoms and we study its basic properties. Model checking is decidable on orbit-finite structures, and a correspondence to parity games holds. On the other hand, satisfiability becomes undecidable. We also show expressive limitations of atom-enriched mu-calculi, and explain how their expressive power depends on the structure of atoms used, a...

متن کامل

Explicit Substitutions for the Lambda � Mu Calculus �

We present a con uent rewrite system which extents a previous calculus of explicit substitu tions for the lambda calculus HaLe to Parigot s untyped lambda mu calculus Par This extension embeds the lambda mu calculus as a sub theory and provides the basis for a theoretical framework to study the abstract properties of implementations of functional pro gramming languages enriched with control str...

متن کامل

Completeness for μ-calculi: a coalgebraic approach

We set up a generic framework for proving completeness results for variants of the modal mucalculus, using tools from coalgebraic modal logic. We illustrate the method by proving two new completeness results: for the graded mu-calculus (which is equivalent to monadic second-order logic on the class of unranked tree models), and for the monotone modal mu-calculus. Besides these main applications...

متن کامل

On independence-friendly fixpoint logics

We introduce a fixpoint extension of Hintikka and Sandu’s IF (independence-friendly) logic. We obtain some results on its complexity and expressive power. We relate it to parity games of imperfect information, and show its application to defining independence-friendly modal mu-calculi. Philosophia Scientiæ, 8 (2), 2004, 125–144.

متن کامل

An Expressive Completeness Theorem for Coalgebraic Modal Μ-calculi

Generalizing standard monadic second-order logic for Kripke models, we introduce monadic second-order logic interpreted over coalgebras for an arbitrary set functor. We then consider invariance under behavioral equivalence of MSO-formulas. More specifically, we investigate whether the coalgebraic mu-calculus is the bisimulation-invariant fragment of the monadic second-order language for a given...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Logical Methods in Computer Science

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2008