Reducing Versatile Bat Wing Conformations to a 1-DoF Machine
نویسندگان
چکیده
Recent works have shown success in mimicking the flapping flight of bats on the robotic platform Bat Bot (B2). This robot has only five actuators but retains the ability to flap and fold-unfold its wings in flight. However, this bat-like robot has been unable to perform folding-unfolding of its wings within the period of a wingbeat cycle, about 100 ms. The DC motors operating the spindle mechanisms cannot attain this folding speed. Biological bats rely on this periodic folding of their wings during the upstroke of the wingbeat cycle. It reduces the moment of inertia of the wings and limits the negative lift generated during the upstroke. Thus, we consider it important to achieve wing folding during the upstroke. A mechanism was designed to couple the flapping cycle to the folding cycle of the robot. We then use biological data to further optimize the mechanism such that the kinematic synergies of the robot best match those of a biological bat. This ensures that folding is performed at the correct point in the wingbeat cycle.
منابع مشابه
A biomimetic robotic platform to study flight specializations of bats
Bats have long captured the imaginations of scientists and engineers with their unrivaled agility and maneuvering characteristics, achieved by functionally versatile dynamic wing conformations as well as more than 40 active and passive joints on the wings. Wing flexibility and complex wing kinematics not only bring a unique perspective to research in biology and aerial robotics but also pose su...
متن کاملDetermination of Dynamic Instability Speed of an Unsweep Wing in Subsonic Flow Including Compressibility Effects
In this paper, the equation of motion of an elastic 2 DoF wing model has been derived using Lagranges method. The aerodynamic loads on the wing were calculated via the Strip-Theory and the effect of compressibility was included. Wing deflections due to bending and twist motions were determined using the Assume-Mode method. The aeroelastic equations were solved numerically using the V-g method. ...
متن کاملTowards Bio-inspired Robotic Aircraft: CPG-based Control of Flapping and Gliding Flight
This paper presents experimental micro aerial vehicle (MAV) research with low-frequency flapping and articulated wing gliding. The importance of phase difference control via an abstract mathematical model of central pattern generators (CPGs) is confirmed with a robotic bat on a 3-DOF pendulum platform. An aerodynamic model for the robotic bat based on the complex wing kinematics is presented. C...
متن کاملDetermination of Dynamic Instability Speed of an Unsweep Wing in Subsonic Flow Including Compressibility Effects
In this paper, the equation of motion of an elastic 2 DoF wing model has been derived using Lagrange's method. The aerodynamic loads on the wing were calculated via the Strip-Theory and the effect of compressibility was included. Wing deflections due to bending and twist motions were determined using the Assume-Mode method. The aeroelastic equations were solved numerically using the V-g method....
متن کاملBat wing sensors support flight control.
Bats are the only mammals capable of powered flight, and they perform impressive aerial maneuvers like tight turns, hovering, and perching upside down. The bat wing contains five digits, and its specialized membrane is covered with stiff, microscopically small, domed hairs. We provide here unique empirical evidence that the tactile receptors associated with these hairs are involved in sensorimo...
متن کامل