Controlled propulsion and separation of helical particles at the nanoscale.
نویسندگان
چکیده
Controlling the motion of nano and microscale objects in a fluid environment is a key factor in designing optimized tiny machines that perform mechanical tasks such as transport of drugs or genetic material in cells, fluid mixing to accelerate chemical reactions, and cargo transport in microfluidic chips. Directed motion is made possible by the coupled translational and rotational motion of asymmetric particles. A current challenge in achieving directed and controlled motion at the nanoscale lies in overcoming random Brownian motion due to thermal fluctuations in the fluid. We use a hybrid lattice-Boltzmann molecular dynamics method with full hydrodynamic interactions and thermal fluctuations to demonstrate that controlled propulsion of individual nanohelices in an aqueous environment is possible. We optimize the propulsion velocity and the efficiency of externally driven nanohelices. We quantify the importance of the thermal effects on the directed motion by calculating the Péclet number for various shapes, number of turns and pitch lengths of the helices. Consistent with the experimental microscale separation of chiral objects, our results indicate that in the presence of thermal fluctuations at Péclet numbers >10, chiral particles follow the direction of propagation according to its handedness and the direction of the applied torque making separation of chiral particles possible at the nanoscale. Our results provide criteria for the design and control of helical machines at the nanoscale.
منابع مشابه
Effect of Nanoscale Titanium Dioxide Particles on the Germination and Growth of Canola (Brassica napus)
An investigation was initiated to examine the effects of nanoscale titanium dioxide particles on plant growth and development. In view of the widespread cultivation of canola in Iran and in other parts of the globe and in view of the potential influence of titanium on its growth, this plant was chosen as the model system. Canola seeds were separately treated with different concentrations of nan...
متن کاملThe chiral magnetic nanomotors.
Propulsion of chiral magnetic nanomotors powered by a rotating magnetic field is in the focus of the modern biomedical applications. This technology relies on strong interactions of dynamic and magnetic degrees of freedom of the system. Here we study in detail various experimentally observed regimes of the helical nanomotor orientation and propulsion depending on the actuation frequency, and es...
متن کاملElectro-osmotic propulsion of helical nanobelt swimmers
Micro and nanoscale mobile agents capable of self-propulsion in low Reynolds number fluids would have a great technological impact in many fields. Few known mechanisms are able to propel such devices. Here we describe helical nanobelt (HNB) swimmers actuated by an electric field-generated electro-osmotic force. These HNB swimmers are designed with a head and a tail, similar to natural micro-org...
متن کاملNumerical Simulation of Particle Separation in the Fluid Flow in a Microchannel Including Spiral and Acoustic Regions
Particulate separation has many applications in medicine, biology and industry. In this research, the separation of polystyrene particles with a diameter of 10, 20 and 30 μm in the fluid flow of a microchannel is investigated. The microchannel consists of a spiral region and a straight region under the influence of acoustic waves. In the spiral region, the particles under hydrodynamic effects u...
متن کاملApplication of synthesized nanoscale zero-valent iron in the treatment of dye solution containing Basic Yellow 28
Nanoscale zero-valent iron NZVI particles were synthesized by the aqueous phase borohydride reduction method, and the synthesized NZVI particles were used for the degradation of Basic Yellow 28 BY28 dye in aqueous solution. The influence of experimental variables such as reaction time, NZVI particle dosage and pH were studied on the decolorization of BY28. Mixing an aqueous solution of 100 mg L...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Soft matter
دوره 13 11 شماره
صفحات -
تاریخ انتشار 2017