On the Convergence of Monotone Lattice Matrices
نویسندگان
چکیده
Since lattice matrices are useful tools in various domains like automata theory, design of switching circuits, logic of binary relations, medical diagnosis, markov chains, computer network, traffic control and so on, the study of the properties of lattice matrices is valuable. A lattice matrix A is called monotone if A is transitive or A is monotone increasing. In this paper, the convergence of monotone matrices is studied. The results obtained here develop the corresponding ones on lattice matrices shown in the references.
منابع مشابه
Some results on $L$-complete lattices
The paper deals with special types of $L$-ordered sets, $L$-fuzzy complete lattices, and fuzzy directed complete posets.First, a theorem for constructing monotone maps is proved, a characterization for monotone maps on an $L$-fuzzy complete lattice is obtained, and it's proved that if $f$ is a monotone map on an $L$-fuzzy complete lattice $(P;e)$, then the least fixpoint of $f$ is meet of a spe...
متن کاملW-convergence of the proximal point algorithm in complete CAT(0) metric spaces
In this paper, we generalize the proximal point algorithm to complete CAT(0) spaces and show that the sequence generated by the proximal point algorithm $w$-converges to a zero of the maximal monotone operator. Also, we prove that if $f: Xrightarrow ]-infty, +infty]$ is a proper, convex and lower semicontinuous function on the complete CAT(0) space $X$, then the proximal...
متن کاملON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS
The main purpose of this paper is to establish different types of convergence theorems for fuzzy Henstock integrable functions, introduced by Wu and Gong cite{wu:hiff}. In fact, we have proved fuzzy uniform convergence theorem, convergence theorem for fuzzy uniform Henstock integrable functions and fuzzy monotone convergence theorem. Finally, a necessary and sufficient condition under which th...
متن کاملConvergence of Convective-Diffusive Lattice Boltzmann Methods
Lattice Boltzmann methods are numerical schemes derived as a kinetic approximation of an underlying lattice gas. A numerical convergence theory for nonlinear convective-diffusive lattice Boltzmann methods is established. Convergence, consistency, and stability are defined through truncated Hilbert expansions. In this setting it is shown that consistency and stability imply convergence. Monotone...
متن کاملA strong convergence theorem for solutions of zero point problems and fixed point problems
Zero point problems of the sum of two monotone mappings and fixed point problems of a strictly pseudocontractive mapping are investigated. A strong convergence theorem for the common solutions of the problems is established in the framework of Hilbert spaces.
متن کامل