Crystallization pathways and kinetics of carbamazepine-nicotinamide cocrystals from the amorphous state by in situ thermomicroscopy, spectroscopy, and calorimetry studies.
نویسندگان
چکیده
The work presented here was motivated by the premise that the amorphous state serves as a medium to study cocrystal formation. The molecular mobility inherent to amorphous phases can lead to molecular associations between different components such that a single crystalline phase of multiple components or cocrystal is formed. Cocrystallization pathways and kinetics were investigated from amorphous equimolar phases of carbamazepine and nicotinamide using hot-stage polarized microscopy (HSPM), hot-stage Raman microscopy (HSRM), differential scanning calorimetry (DSC), and X-ray powder diffraction (XRPD). Nonisothermal studies revealed that amorphous phases generate cocrystals and that thermal history affects crystallization pathways in significant ways. Two different pathways to cocrystal formation from the amorphous phase were identified: (1) at low heating rates (3 degrees C/min) a metastable cocrystalline phase initially nucleates and transforms to the more stable cocrystalline phase of CBZ-NCT, and (2) at higher heating rates (10 degrees C/min) individual components crystallize, then melt and the stable cocrystalline phase nucleates and grows from the melt. Isothermal studies above the T(g) of the amorphous equimolar phase also confirm the nucleation of a metastable cocrystalline phase from the amorphous state followed by a solid phase mediated transformation to the stable cocrystalline phase. Cocrystallization kinetics were measured by image analysis and by thermal analysis from small samples and are described by the Avrami-Erofeev model. These findings have important implications for the use of amorphous phases in the discovery of cocrystals and to determine the propensity of cocrystallization from process-induced amorphization.
منابع مشابه
Crystallization of Carbamazepine in Proximity to Its Precursor Iminostilbene and a Silica Surface
Amorphous films of the anticonvulsant drug carbamazepine are easily accessible by various methods, while the crystallization into specific polymorphs represents a challenging and time-consuming task. In this work, the crystallization of drop cast carbamazepine at silica surfaces is investigated by atomic force microscopy and both in situ and ex situ grazing incidence X-ray diffraction. The pris...
متن کاملCrystallization Kinetics Study in Al87Ni10La3 Amorphous Alloy
In this study, the crystallization behavior of melt-spun Al87Ni10La3 amorphous phase was investigated by using X-ray diffraction and non-isothermal differential thermal analysis techniques. The results demonstrated that the amorphous phase exhibited two-stage crystallization on heating, i.e., at first step the amorphous phase transforms into α-Al phase and at second step Al11La3 and Al3Ni inter...
متن کاملCrystallization Behavior and Mechanical Properties of In-situ Alumina-Zirconia Composite Bodies
In-situ alumina-zirconia composite bodies were fabricated by heat treatment of gibbsite-zircon-kaolinite mixture at 1450℃. The current research investigated crystallization behavior and mechanical properties of the mentioned mixture in the presence of 5 wt.% MgO as an additive. X-ray diffraction (XRD) results showed that alumina, zirconia, and magnesium aluminosilicate were crystallized during ...
متن کاملKINETICS OF -Fe NANOCRYSTALLIZATION IN Fe55Cr18Mo7B16C4 BULK AMORPHOUS ALLOY
Abstract: In this research work, crystallization kinetics of Fe55Cr18Mo7B16C4 alloy was evaluated by X-ray diffraction, TEM observations and differential scanning calorimetric tests. In practice, crystallization and growth mechanisms were investigated using DSC tests in four different heating rates. Results showed that a two -step crystallization process occurred in the alloy in which - Fe phas...
متن کاملNon-isothermal Primary Crystallization Kinetics of the Amorphous Fe85.3B11P3Cu0.7 Alloy
In the present research, the primary crystallization kinetics of the amorphous Fe85.3B11P3Cu0.7 alloy was analyzed using non-isothermal DSC measurements. The average and local activation energies, Ea, were determined by different isokinetic and isoconversional methods. The results obtained for activation energy in this research, show that due to the complexity of the primary crystallization pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of pharmaceutical sciences
دوره 96 5 شماره
صفحات -
تاریخ انتشار 2007