On the factorization of simplex basis matrices

نویسنده

  • R. LUCE
چکیده

In the simplex algorithm, solving linear systems with the basis matrix and its transpose accounts for a large part of the total computation time. The most widely used solution technique is sparse LU factorization, paired with an updating scheme that allows to use the factors over several iterations. Clearly, small number of fill-in elements in the LU factors is critical for the overall performance. Using a wide range of LPs we show numerically that after a simple permutation the nontriangular part of the basis matrix is so small, that the whole matrix can be factorized with (relative) fill-in close to the optimum. This permutation has been exploited by simplex practitioners for many years. But to our knowledge no systematic numerical study has been published that demonstrates the effective reduction to a surprisingly small non-triangular problem, even for large scale LPs. For the factorization of the non-triangular part most existing simplex codes use some variant of dynamic Markowitz pivoting, which originated in the late 1950s. We also show numerically that, in terms of fill-in and in the simplex context, dynamic Markowitz is quite consistently superior to other, more recently developed techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the WZ Factorization of the Real and Integer Matrices

The textit{QIF}  (Quadrant Interlocking Factorization) method of Evans and Hatzopoulos solves linear equation systems using textit{WZ}  factorization. The  WZ factorization can be faster than the textit{LU} factorization  because,  it performs the simultaneous evaluation of two columns or two rows. Here, we present a  method for computing the real and integer textit{WZ} and  textit{ZW} factoriz...

متن کامل

Permutations in the factorization of simplex bases

The basis matrices corresponding to consecutive iterations of the simplex method only differ in a single column. This fact is commonly exploited in current LP solvers to avoid having to compute a new factorization of the basis at every iteration. Instead, a previous factorization is updated to reflect the modified column. Several methods are known for performing the update, most prominently the...

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

THE USE OF SEMI INHERITED LU FACTORIZATION OF MATRICES IN INTERPOLATION OF DATA

The polynomial interpolation in one dimensional space R is an important method to approximate the functions. The Lagrange and Newton methods are two well known types of interpolations. In this work, we describe the semi inherited interpolation for approximating the values of a function. In this case, the interpolation matrix has the semi inherited LU factorization.

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009