Monotonicity-Preserving Piecewise Rational Cubic Interpolation

نویسنده

  • Meng Tian
چکیده

An explicit representation of a C1 piecewise rational cubic spline has been developed, which can produce a monotonic interpolant to given monotonic data. The explicit representation is easily constructed, and numerical experiments indicate that the method produces visually pleasing curves. Furthermore, an error analysis of the interpolant is given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positivity-Preserving Piecewise Rational Cubic Interpolation

A piecewise rational cubic spline [5] has been used to visualize the positive data in its natural form. The spline representation is interpolatory and applicable to the scalar valued data. The shape parameters in the description of a rational cubic have been constrained in such a way that they preserve the shape of the positive data in the view of positive curve. As far as visual smoothness is ...

متن کامل

Positivity-preserving rational bi-cubic spline interpolation for 3D positive data

This paper deals with the shape preserving interpolation problem for visualization of 3D positive data. A required display of 3D data looks smooth and pleasant. A rational bi-cubic function involving six shape parameters is presented for this objective which is an extension of piecewise rational function in the form of cubic/quadratic involving three shape parameters. Simple data dependent cons...

متن کامل

Monotone Rational Trigonometric Interpolation

This study is concerned with the visualization of monotone data using a piecewise C rational trigonometric interpolating scheme. Four positive shape parameters are incorporated in the structure of rational trigonometric spline. Conditions on two of these parameters are derived to attain the monotonicity of monotone data and other two are left free. Figures are used widely to exhibit that the pr...

متن کامل

Constrained Interpolation via Cubic Hermite Splines

Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation.  It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...

متن کامل

Shape Preserving C2 Interpolatory Subdivision Schemes

Stationary interpolatory subdivision schemes which preserve shape properties such as convexity or monotonicity are constructed. The schemes are rational in the data and generate limit functions that are at least C 2. The emphasis is on a class of six-point convexity preserving subdivision schemes that generate C 2 limit functions. In addition, a class of six-point monotonicity preserving scheme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010