Intracardiac Vortex Dynamics by High-Frame-Rate Doppler Vortography-In Vivo Comparison With Vector Flow Mapping and 4-D Flow MRI.
نویسندگان
چکیده
Recent studies have suggested that intracardiac vortex flow imaging could be of clinical interest to early diagnose the diastolic heart function. Doppler vortography has been introduced as a simple color Doppler method to detect and quantify intraventricular vortices. This method is able to locate a vortex core based on the recognition of an antisymmetric pattern in the Doppler velocity field. Because the heart is a fast-moving organ, high frame rates are needed to decipher the whole blood vortex dynamics during diastole. In this paper, we adapted the vortography method to high-frame-rate echocardiography using circular waves. Time-resolved Doppler vortography was first validated in vitro in an ideal forced vortex. We observed a strong correlation between the core vorticity determined by high-frame-rate vortography and the ground-truth vorticity. Vortography was also tested in vivo in ten healthy volunteers using high-frame-rate duplex ultrasonography. The main vortex that forms during left ventricular filling was tracked during two-three successive cardiac cycles, and its core vorticity was determined at a sampling rate up to 80 duplex images per heartbeat. Three echocardiographic apical views were evaluated. Vortography-derived vorticities were compared with those returned by the 2-D vector flow mapping approach. Comparison with 4-D flow magnetic resonance imaging was also performed in four of the ten volunteers. Strong intermethod agreements were observed when determining the peak vorticity during early filling. It is concluded that high-frame-rate Doppler vortography can accurately investigate the diastolic vortex dynamics.
منابع مشابه
Doppler vortography: a color Doppler approach to quantification of intraventricular blood flow vortices.
We propose a new approach to quantification of intracardiac vorticity based on conventional color Doppler images -Doppler vortography. Doppler vortography relies on the centrosymmetric properties of the vortices. Such properties induce particular symmetries in the Doppler flow data that can be exploited to describe the vortices quantitatively. For this purpose, a kernel filter was developed to ...
متن کاملCurrent Clinical Application of Intracardiac Flow Analysis Using Echocardiography
In evaluating the cardiac function, it is important to have a comprehensive assessment of structural factors, such as the myocardial or valvular function and intracardiac flow dynamics that pass the heart. Vortex flow that form during left ventricular filling have specific geometry and anatomical location that are critical determinants of directed blood flow during ejection. The formation of ab...
متن کاملEvaluation of diastolic blood flow dynamic of the left ventricle in dogs with mitral valve regurgitation using vector flow mapping
Mitral valve regurgitation (MVR) is a common valvular disease in dogs. Hydrokinetic evaluation of the blood flow within the ventricles has become possible by vector flow mapping (VFM), which shows the blood flow within the ventricles in vector and vortex flows. Blood flow within the left ventricle of MVR dogs was compared at different stages of MVR and to that of normal dogs. 14 normal dogs and...
متن کاملHigh Reynolds Viscous Flow Simulation Past the Elliptical Airfoil by Random Vortex Blob
In this paper, numerical simulation for a two-dimensional viscous and incompressible flow past the elliptical airfoil is presented by Random Vortex Blob (RVB). RVB is a numerical technique to solve the incompressible, two-dimensional and unsteady Navier-Stocks equations by converting them to rotational non-primitive formulations. In this method, the velocity vector at a certain point can be cal...
متن کاملEcho speckle imaging of blood particles with high-frame-rate echocardiography
Cardiac blood flow patterns such as the vortex flow pattern inside the left ventricle have been studied to provide new information for the diagnosis of the pumping function of the human heart. Complex blood flow is visualized by imaging echo speckles of blood particles because the speckle-like texture translates to the motion of blood particles. We proposed an imaging method for echo speckles o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on ultrasonics, ferroelectrics, and frequency control
دوره 64 2 شماره
صفحات -
تاریخ انتشار 2017