Effective classification of microRNA precursors using feature mining and AdaBoost algorithms.
نویسندگان
چکیده
MicroRNAs play important roles in most biological processes, including cell proliferation, tissue differentiation, and embryonic development, among others. They originate from precursor transcripts (pre-miRNAs), which contain phylogenetically conserved stem-loop structures. An important bioinformatics problem is to distinguish the pre-miRNAs from pseudo pre-miRNAs that have similar stem-loop structures. We present here a novel method for tackling this bioinformatics problem. Our method, named MirID, accepts an RNA sequence as input, and classifies the RNA sequence either as positive (i.e., a real pre-miRNA) or as negative (i.e., a pseudo pre-miRNA). MirID employs a feature mining algorithm for finding combinations of features suitable for building pre-miRNA classification models. These models are implemented using support vector machines, which are combined to construct a classifier ensemble. The accuracy of the classifier ensemble is further enhanced by the utilization of an AdaBoost algorithm. When compared with two closely related tools on twelve species analyzed with these tools, MirID outperforms the existing tools on the majority of the twelve species. MirID was also tested on nine additional species, and the results showed high accuracies on the nine species. The MirID web server is fully operational and freely accessible at http://bioinformatics.njit.edu/MirID/ . Potential applications of this software in genomics and medicine are also discussed.
منابع مشابه
Effective Classification of MicroRNA Precursors Using Combinatorial Feature Mining and AdaBoost Algorithms
MicroRNAs (miRNAs) are non-coding RNAs with approximately 22 nucleotides (nt) that are derived from precursor molecules. These precursor molecules or pre-miRNAs often fold into stem-loop hairpin structures. However, a large number of sequences with premiRNA-like hairpins can be found in genomes. It is a challenge to distinguish the real pre-miRNAs from other hairpin sequences with similar stem-...
متن کاملADABOOST ENSEMBLE ALGORITHMS FOR BREAST CANCER CLASSIFICATION
With an advance in technologies, different tumor features have been collected for Breast Cancer (BC) diagnosis, processing of dealing with large data set suffers some challenges which include high storage capacity and time require for accessing and processing. The objective of this paper is to classify BC based on the extracted tumor features. To extract useful information and diagnose the tumo...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کاملClassification of ECG signals using Hermite functions and MLP neural networks
Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...
متن کاملThe prediction of lymphedema via the combination of the selected data mining algorithms
Background: Breast cancer is the second leading cause of cancer death in women, after lung cancer. Due to the importance of predicting this disease, the use of data mining methods in medical research is more significant than before. Data mining algorithms can be a great help in preventing the development of lymphedema in patients. The aim Of this study was to create a diagnosis system that can ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Omics : a journal of integrative biology
دوره 17 9 شماره
صفحات -
تاریخ انتشار 2013