Lagrange form of the nonlinear Schrödinger equation for low-vorticity waves in deep water

نویسندگان

  • Anatoly Abrashkin
  • Efim Pelinovsky
چکیده

The nonlinear Schrödinger (NLS) equation describing the propagation of weakly rotational wave packets in an infinitely deep fluid in Lagrangian coordinates has been derived. The vorticity is assumed to be an arbitrary function of Lagrangian coordinates and quadratic in the small parameter proportional to the wave steepness. The vorticity effects manifest themselves in a shift of the wave number in the carrier wave and in variation in the coefficient multiplying the nonlinear term. In the case of vorticity dependence on the vertical Lagrangian coordinate only (Gouyon waves), the shift of the wave number and the respective coefficient are constant. When the vorticity is dependent on both Lagrangian coordinates, the shift of the wave number is horizontally inhomogeneous. There are special cases (e.g., Gerstner waves) in which the vorticity is proportional to the squared wave amplitude and nonlinearity disappears, thus making the equations for wave packet dynamics linear. It is shown that the NLS solution for weakly rotational waves in the Eulerian variables may be obtained from the Lagrangian solution by simply changing the horizontal coordinates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactive comment on “The Lagrange form of the nonlinear Schrödinger equation for low-vorticity waves in deep water: rogue wave aspect” by Anatoly Abrashkin and Efim Pelinovsky

The paper describes a new derivation of the NLS equation, based on a Lagrangian coordinates approach, in the presence of weak vorticity. First, an introduction presents several previously existing derivations of the NLS equation, and offers an interesting review of recent developments designed to take vorticity into account. Then, the Lagrange coordinates, and associated general equations are p...

متن کامل

Interactive comment on “The Lagrange form of the nonlinear Schrödinger equation for low-vorticity waves in deep water: rogue wave aspect” by

The paper describes a new derivation of the NLS equation, based on a Lagrangian coordinates approach, in the presence of weak vorticity. First, an introduction presents several previously existing derivations of the NLS equation, and offers an interesting review of recent developments designed to take vorticity into account. Then, the Lagrange coordinates, and associated general equations are p...

متن کامل

Lagrange form of the nonlinear Schrödinger equation for 1 low - vorticity waves in deep water

1 low-vorticity waves in deep water 2 3 Anatoly Abrashkin 1 and Efim Pelinovsky 2,3 4 1 National Research University Higher School of Economics (HSE), 5 25/12 Bol'shaya Pecherskaya str., Nizhny Novgorod, 603155, Russia 6 2 Institute of Applied Physics RAS, 46 Ulyanov str., Nizhny Novgorod, 603950, Russia 7 3 Nizhny Novgorod State Technical University n.a. R. Alekseev, 24 Minin str., Nizhny 8 No...

متن کامل

The Lagrange form of the nonlinear Schrödinger equation for low - 1 vorticity waves in deep water : rogue wave aspect

3 Anatoly Abrashkin and Efim Pelinovsky 4 5 a National Research University Higher School of Economics (HSE), Nizhny Novgorod 6 603155, Russia 7 b Institute of Applied Physics, 603950, 46 Ulyanov str., Nizhny Novgorod, Russia 8 c Nizhny Novgorod State Technical University, Nizhny Novgorod, Russia 9 10 11 Abstract: 12 The nonlinear Schrödinger equation (NLS equation) describing weakly 13 rotation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017