The distribution of Dishevelled in convergently extending mesoderm☆

نویسندگان

  • Eleni Panousopoulou
  • Richard A. Tyson
  • Till Bretschneider
  • Jeremy B.A. Green
چکیده

Convergent extension (CE) is a conserved morphogenetic movement that drives axial lengthening of the primary body axis and depends on the planar cell polarity (PCP) pathway. In Drosophila epithelia, a polarised subcellular accumulation of PCP core components, such as Dishevelled (Dvl) protein, is associated with PCP function. Dvl has long been thought to accumulate in the mediolateral protrusions in Xenopus chordamesoderm cells undergoing CE. Here we present a quantitative analysis of Dvl intracellular localisation in Xenopus chordamesoderm cells. We find that, surprisingly, accumulations previously observed at mediolateral protrusions of chordamesodermal cells are not protrusion-specific but reflect yolk-free cytoplasm and are quantitatively matched by the distribution of the cytoplasm-filling lineage marker dextran. However, separating cell cortex-associated from bulk Dvl signal reveals a statistical enrichment of Dvl in notochord-somite boundary-(NSB)-directed protrusions, which is dependent upon NSB proximity. Dvl puncta were also observed, but only upon elevated overexpression. These puncta showed no statistically significant spatial bias, in contrast to the strongly posteriorly-enriched GFP-Dvl puncta previously reported in zebrafish. We propose that Dvl distribution is more subtle and dynamic than previously appreciated and that in vertebrate mesoderm it reflects processes other than protrusion as such.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cooperation of polarized cell intercalations drives convergence and extension of presomitic mesoderm during zebrafish gastrulation

During vertebrate gastrulation, convergence and extension (C&E) movements narrow and lengthen the embryonic tissues, respectively. In zebrafish, regional differences of C&E movements have been observed; however, the underlying cell behaviors are poorly understood. Using time-lapse analyses and computational modeling, we demonstrate that C&E of the medial presomitic mesoderm is achieved by coope...

متن کامل

Nitric oxide coordinates cell proliferation and cell movements during early development of Xenopus.

The establishment of a vertebrate body plan during embryogenesis is achieved through precise coordination of cell proliferation and morphogenetic cell movements. Here we show that nitric oxide (NO) suppresses cell division and facilitates cell movements during early development of Xenopus, such that inhibition of NO synthase (NOS) increases proliferation in the neuroectoderm and suppresses conv...

متن کامل

Dorsalizing and neuralizing properties of Xdsh, a maternally expressed Xenopus homolog of dishevelled.

Signaling factors of the Wnt proto-oncogene family are implicated in dorsal axis formation during vertebrate development, but the molecular mechanism of this process is not known. Studies in Drosophila have indicated that the dishevelled gene product is required for wingless (Wnt1 homolog) signal transduction. We demonstrate that injection of mRNA encoding a Xenopus homolog of dishevelled (Xdsh...

متن کامل

Analysis of Dishevelled signalling pathways during Xenopus development

BACKGROUND Recent studies have demonstrated that the Wnt, Frizzled and Notch proteins are involved in a variety of developmental processes in fly, worm, frog and mouse embryos. The Dishevelled (Dsh) protein is required for Drosophila cells to respond to Wingless, Notch and Frizzled signals, but the molecular mechanisms of its action are not well understood. Using the ability of a mutant form of...

متن کامل

Xenopus Dishevelled signaling regulates both neural and mesodermal convergent extension: parallel forces elongating the body axis.

During amphibian development, non-canonical Wnt signals regulate the polarity of intercalating dorsal mesoderm cells during convergent extension. Cells of the overlying posterior neural ectoderm engage in similar morphogenetic cell movements. Important differences have been discerned in the cell behaviors associated with neural and mesodermal cell intercalation, raising the possibility that dif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 382  شماره 

صفحات  -

تاریخ انتشار 2013