Causal Modeling Under Complex Dependency in Clustered and Longitudinal Observations

نویسندگان

  • Jiwei He
  • Alisa J. Stephens
چکیده

In assessing the efficacy of a time-varying treatment Marginal Structural Models (MSMs) and Structural Nested Mean Models (SNMMs) are useful in dealing with confounding by variables affected by earlier treatments. MSMs model the joint effect of treatments on the marginal mean of the potential outcome, whereas SNMMs model the joint effect of treatments on the mean of the potential outcome conditional on the treatment and covariate history. These models often consider independent subjects with noninformative time of observation. The first two chapters extend the two classes of models to clustered observations with time-varying treatments in the presence of time-varying confounding. We formulate models with both clusterand unit-level treatments and derive semiparametric estimators of parameters in such models. For unit-level treatments, we consider both the presence and absence of interference, namely the effect of treatment on outcomes in other units of the same cluster. For MSMs, we show that the use of unit-specific inverse probability weights and certain working correlation structures can improve the efficiency of estimators under specified conditions. The properties of the estimators are evaluated through simulations and compared with the conventional GEE regression method for clustered outcomes. To illustrate our methods, we use data from the treatment arm of a glaucoma clinical trial to compare the effectiveness of two commonly used ocular hypertension medications. The third chapter extends SNMMs to situations with intermittent missing observations. In observational longitudinal studies, subjects often miss prescheduled visits intermittently. Previous literature has mainly focused on dealing with monotone censoring due to early dropout. Here we focus on intermittent missingness that can depend on the subjects' covariate and treatment history. We show that under certain assumptions the standard SNMMs can be used for situations where non-outcome covariates are missing intermittently. In situations where outcomes are also missing intermittently, we use a method that does not require artificially censoring the data, but requires a strict missing at random assumption. The estimators are shown to be consistent and achieve reasonable efficiency. We illustrate the method by estimating the effect of non-steroidal anti-inflammatory drugs (NSAIDs) on genitourinary pain using data from a study of chronic pelvic pain. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Epidemiology & Biostatistics First Advisor Alisa J. Stephens This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1311

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extension of Logic regression to Longitudinal data: Transition Logic Regression

Logic regression is a generalized regression and classification method that is able to make Boolean combinations as new predictive variables from the original binary variables. Logic regression was introduced for case control or cohort study with independent observations. Although in various studies, correlated observations occur due to different reasons, logic regression have not been studi...

متن کامل

Empirical estimates for various correlations in longitudinal-dynamic heteroscedastic hierarchical normal models

In this paper, we first define longitudinal-dynamic heteroscedastic hierarchical  normal  models. These models can be used to fit longitudinal data in which the dependency structure is constructed through a dynamic model rather than observations. We discuss different methods for estimating the hyper-parameters. Then the corresponding estimates for the hyper-parameter that causes the association...

متن کامل

Investigating the Role of Land Use on vandalism in Urban Public Spaces

Vandalism is one of the problems of cities today in urban public spaces. Vandalism tendencies are shaped by intrinsic and personality factors. And how the location of the location affects the likelihood of vandalism. Among the landmarks, land use is one of the factors affecting the occurrence of degradation. The role of land use index has been examined under the criterion of land use compatibil...

متن کامل

Detection and Modeling of Medium-Scale Travelling Ionospheric Disturbances in Iran Region

Ionosphere layer variations are divided into regular and irregular. Regular changes can be considered as daily changes, changes depending on latitude and changes due to solar activity. Travelling Ionospheric Disturbances (TID) is one of the irregular changes of ionosphere which categorized in small, medium and large scales. Medium-scale Travelling Ionospheric Disturbance (MSTID) which are propa...

متن کامل

Causal probabilistic modeling for malignancy grading in pathology with explanations of dependency to the related histological features.

This work demonstrates that histological grading of brain tumors and astrocytomas can be accurately predicted and causally explained with the help of causal probabilistic models, also known as Bayesian networks (BN). Although created statistically, this allows individual identification of the grade of malignancy as an internal cause that has enabled the development of the histological features ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017