Detection of Drug-Drug Interactions Inducing Acute Kidney Injury by Electronic Health Records Mining.
نویسندگان
چکیده
BACKGROUND AND OBJECTIVE While risk of acute kidney injury (AKI) is a well documented adverse effect of some drugs, few studies have assessed the relationship between drug-drug interactions (DDIs) and AKI. Our objective was to develop an algorithm capable of detecting potential signals on this relationship by retrospectively mining data from electronic health records. MATERIAL AND METHODS Data were extracted from the clinical data warehouse (CDW) of the Hôpital Européen Georges Pompidou (HEGP). AKI was defined as the first level of the RIFLE criteria, that is, an increase ≥50 % of creatinine basis. Algorithm accuracy was tested on 20 single drugs, 10 nephrotoxic and 10 non-nephrotoxic. We then tested 45 pairs of non-nephrotoxic drugs, among the most prescribed at our hospital and representing distinct pharmacological classes for DDIs. RESULTS Sensitivity and specificity were 50 % [95 % confidence interval (CI) 23.66-76.34] and 90 % (95 % CI 59.58-98.21), respectively, for single drugs. Our algorithm confirmed a previously identified signal concerning clarithromycin and calcium-channel blockers (unadjusted odds ratio (ORu) 2.92; 95 % CI 1.11-7.69, p = 0.04). Among the 45 drug pairs investigated, we identified a signal concerning 55 patients in association with bromazepam and hydroxyzine (ORu 1.66; 95 % CI 1.23-2.23). This signal was not confirmed after a chart review. Even so, AKI and co-prescription were confirmed for 96 % (95 % CI 88-99) and 88 % (95 % CI 76-94) of these patients, respectively. CONCLUSION Data mining techniques on CDW can foster the detection of adverse drug reactions when drugs are used alone or in combination.
منابع مشابه
Using Rich Data on Comorbidities in Case-Control Study Design with Electronic Health Record Data Improves Control of Confounding in the Detection of Adverse Drug Reactions
Recent research has suggested that the case-control study design, unlike the self-controlled study design, performs poorly in controlling confounding in the detection of adverse drug reactions (ADRs) from administrative claims and electronic health record (EHR) data, resulting in biased estimates of the causal effects of drugs on health outcomes of interest (HOI) and inaccurate confidence inter...
متن کاملData mining on electronic health record databases for signal detection in pharmacovigilance: which events to monitor?
PURPOSE Data mining on electronic health records (EHRs) has emerged as a promising complementary method for post-marketing drug safety surveillance. The EU-ADR project, funded by the European Commission, is developing techniques that allow mining of EHRs for adverse drug events across different countries in Europe. Since mining on all possible events was considered to unduly increase the number...
متن کاملUsing Linked Data for Mining Drug-Drug Interactions in Electronic Health Records
By nature, healthcare data is highly complex and voluminous. While on one hand, it provides unprecedented opportunities to identify hidden and unknown relationships between patients and treatment outcomes, or drugs and allergic reactions for given individuals, representing and querying large network datasets poses significant technical challenges. In this research, we study the use of Semantic ...
متن کاملImproving the measurement and detection of serious adverse drug reactions in databases of stored electronic health records
....................................................................................................................................... 3 1 Background ....................................................................................................................... 15 1.1 Introduction ...........................................................................................................
متن کاملEnhancing Adverse Drug Event Detection in Electronic Health Records Using Molecular Structure Similarity: Application to Pancreatitis
BACKGROUND Adverse drug events (ADEs) detection and assessment is at the center of pharmacovigilance. Data mining of systems, such as FDA's Adverse Event Reporting System (AERS) and more recently, Electronic Health Records (EHRs), can aid in the automatic detection and analysis of ADEs. Although different data mining approaches have been shown to be valuable, it is still crucial to improve the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug safety
دوره 38 9 شماره
صفحات -
تاریخ انتشار 2015