Thermodynamically irreversible gating of ryanodine receptors in situ revealed by stereotyped duration of release in Ca(2+) sparks.

نویسندگان

  • Shi-Qiang Wang
  • Long-Sheng Song
  • Le Xu
  • Gerhard Meissner
  • Edward G Lakatta
  • Eduardo Ríos
  • Michael D Stern
  • Heping Cheng
چکیده

For a single or a group of Markov channels gating reversibly, distributions of open and closed times should be the sum of positively weighted decaying exponentials. Violation of this microscopic reversibility has been demonstrated previously on a number of occasions at the single channel level, and has been attributed to possible channel coupling to external sources of free energy. Here we show that distribution of durations of Ca(2+) release underlying Ca(2+) sparks in intact cardiac myocytes exhibits a prominent mode at approximately 8 ms. Analysis of the cycle time for repetitive sparks at hyperactive sites revealed no intervals briefer than approximately 35 ms and a mode at approximately 90 ms. These results indicate that, regardless of whether Ca(2+) sparks are single-channel or multi-channel in origin, they are generated by thermodynamically irreversible stochastic processes. In contrast, data from planar lipid bilayer experiments were consistent with reversible gating of RyR under asymmetric cis (4 microM) and trans Ca(2+) (10 mM), suggesting that the irreversibility for Ca(2+) spark genesis may reside at a supramolecular level. Modeling suggests that Ca(2+)-induced Ca(2+) release among adjacent RyRs may couple the external energy derived from Ca(2+) gradients across the SR to RyR gating in situ, and drive the irreversible generation of Ca(2+) sparks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The quantal nature of Ca2+ sparks and in situ operation of the ryanodine receptor array in cardiac cells.

Intracellular Ca(2+) release in many types of cells is mediated by ryanodine receptor Ca(2+) release channels (RyRCs) that are assembled into two-dimensional paracrystalline arrays in the endoplasmic/sarcoplasmic reticulum. However, the in situ operating mechanism of the RyRC array is unknown. Here, we found that the elementary Ca(2+) release events, Ca(2+) sparks from individual RyRC arrays in...

متن کامل

Calcium-Induced Calcium Release in Smooth Muscle

Calcium-induced calcium release (CICR) has been observed in cardiac myocytes as elementary calcium release events (calcium sparks) associated with the opening of L-type Ca(2+) channels. In heart cells, a tight coupling between the gating of single L-type Ca(2+) channels and ryanodine receptors (RYRs) underlies calcium release. Here we demonstrate that L-type Ca(2+) channels activate RYRs to pro...

متن کامل

Quarky calcium release in the heart.

RATIONALE In cardiac myocytes, "Ca(2+) sparks" represent the stereotyped elemental unit of Ca(2+) release arising from activation of large arrays of ryanodine receptors (RyRs), whereas "Ca(2+) blinks" represent the reciprocal Ca(2+) depletion signal produced in the terminal cisterns of the junctional sarcoplasmic reticulum. Emerging evidence, however, suggests possible substructures in local Ca...

متن کامل

Recovery of cardiac calcium release is controlled by sarcoplasmic reticulum refilling and ryanodine receptor sensitivity.

AIMS In heart cells, the mechanisms underlying refractoriness of the elementary units of sarcoplasmic reticulum (SR) Ca(2+) release, Ca(2+) sparks, remain unclear. We investigated local recovery of SR Ca(2+) release using experimental measurements and mathematical modelling. METHODS AND RESULTS Repeated Ca(2+) sparks were induced from individual clusters of ryanodine receptors (RyRs) in quies...

متن کامل

Role of coupled gating between cardiac ryanodine receptors in the genesis of triggered arrhythmias.

Mutations in the ryanodine receptor (RyR) have been linked to exercise-induced sudden cardiac death. However, the precise sequence of events linking RyR channel mutations to a whole heart arrhythmia is not completely understood. In this paper, we apply a detailed, mathematical model of subcellular calcium (Ca) release, coupled to membrane voltage, to study how defective RyR channels can induce ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 83 1  شماره 

صفحات  -

تاریخ انتشار 2002