Enhanced electrochemiluminescence quenching of CdS:Mn nanocrystals by CdTe QDs-doped silica nanoparticles for ultrasensitive detection of thrombin.
نویسندگان
چکیده
This work reports an aptasensor for ultrasensitive detection of thrombin based on remarkably efficient energy-transfer induced electrochemiluminescence (ECL) quenching from CdS:Mn nanocrystals (NCs) film to CdTe QDs-doped silica nanoparticles (CdTe/SiO(2) NPs). CdTe/SiO(2) NPs were synthesized via the Stöber method and showed black bodies' strong absorption in a wide spectral range without excitonic emission, which made them excellent ECL quenchers. Within the effective distance of energy scavenging, the ECL quenching efficiency was dependent on the number of CdTe QDs doped into the silica NPs. Using ca. 200 CdTe QDs doped silica NPs on average of 40 nm in diameter as ECL quenching labels, attomolar detection of thrombin was successfully realized. The protein detection involves a competition binding event, based on thrombin replacing CdTe/SiO(2) NPs labeled probing DNA which is hybridized with capturing aptamer immobilized on a CdS:Mn NCs film modified glassy carbon electrode surface by specific aptamer-protein affinity interactions. It results in the displacement of ECL quenching labels from CdS:Mn NCs film and concomitant ECL signal recovery. Owing to the high-content CdTe QDs in silica NP, the increment of ECL intensity (ΔI(ECL)) and the concentration of thrombin showed a double logarithmic linear correlation in the range of 5.0 aM∼5.0 fM with a detection limit of 1aM. And, the aptasensor hardly responded to antibody, bovine serum albumin (BSA), haemoglobin (Hb) and lysozyme, showing good detection selectivity for thrombin. This long-distance energy scavenging could have a promising application perspective in the detection of biological recognition events on a molecular level.
منابع مشابه
Electrochemiluminescence quenching by CdTe quantum dots through energy scavenging for ultrasensitive detection of antigen.
Efficient electrochemiluminescence (ECL) quenching was achieved by functionalized CdTe quantum dots (QDs) through ECL energy scavenging, based on which ultrasensitive antigen detection could be realized.
متن کاملAn Ultrasensitive Electrochemiluminescence Immunoassay for Carbohydrate Antigen 19-9 in Serum Based on Antibody Labeled Fe3O4 Nanoparticles as Capture Probes and Graphene/CdTe Quantum Dot Bionanoconjugates as Signal Amplifiers
The CdTe quantum dots (QDs), graphene nanocomposite (CdTe-G) and dextran-Fe3O4 magnetic nanoparticles have been synthesized for developing an ultrasensitive electrochemiluminescence (ECL) immunoassay for Carcinoembryonic antigen 19-9 (CA 19-9) in serums. Firstly, the capture probes (CA 19-9 Ab1/Fe3O4) for enriching CA 19-9 were synthesized by immobilizing the CA 19-9's first antibody (CA 19-9 A...
متن کاملAmplified quenching of electrochemiluminescence from CdS sensitized TiO2 nanotubes by CdTe-carbon nanotube composite for detection of prostate protein antigen in serum.
This work reports an ECL immunoassay method for ultrasensitive detection of prostate protein antigen (PSA), by remarkably efficient energy-transfer induced electrochemiluminescence (ECL) quenching from the CdS nanoparticles (NPs) sensitized TiO(2) nanotube array (CdS-TiO(2) NTs) to the activated CdTe NPs functionalized multi-wall carbon nanotubes (CdTe-MWNTs) composite. The coupling of TiO(2) a...
متن کاملCoreactant enhanced anodic electrochemiluminescence of CdTe quantum dots at low potential for sensitive biosensing amplified by enzymatic cycle.
This work used sulfite as a coreactant to enhance the anodic electrochemiluminescence (ECL) of mercaptopropionic acid modified CdTe quantum dots (QDs). This strategy proposed the first coreactant anodic ECL of QDs and led to a sensitive ECL emission of QDs in aqueous solution at relatively low potential. In the presence of dissolved oxygen, the stable ECL emission resulted from the excited QDs....
متن کاملNanoparticles as scaffolds for FRET-based ratiometric detection of mercury ions in water with QDs as donors.
The quenching of quantum dots' emission by some analytes (Hg(2+), Pb(2+), etc.) has long been hindering the fabrication of QD-based 'turn-on' or ratiometric fluorescent sensors for these analytes. In this study, we demonstrate a facile solution for constructing a robust FRET-based ratiometric sensor for Hg(2+) detection in water with CdTe QDs as the donor. By using the reverse microemulsion app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 3 7 شماره
صفحات -
تاریخ انتشار 2011