A Bayesian level set method for geometric inverse problems

نویسندگان

  • MARCO A. IGLESIAS
  • YULONG LU
  • ANDREW M. STUART
  • A. M. STUART
چکیده

We introduce a level set based approach to Bayesian geometric inverse problems. In these problems the interface between different domains is the key unknown, and is realized as the level set of a function. This function itself becomes the object of the inference. Whilst the level set methodology has been widely used for the solution of geometric inverse problems, the Bayesian formulation that we develop here contains two significant advances: firstly it leads to a well-posed inverse problem in which the posterior distribution is Lipschitz with respect to the observed data, and may be used to not only estimate interface locations, but quantify uncertainty in them; and secondly it leads to computationally expedient algorithms in which the level set itself is updated implicitly via the MCMC methodology applied to the level set function – no explicit velocity field is required for the level set interface. Applications are numerous and include medical imaging, modelling of subsurface formations and the inverse source problem; our theory is illustrated with computational results involving the last two applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Problems in Imaging Systems and the General Bayesian Inversion Frawework

In this paper, first a great number of inverse problems which arise in instrumentation, in computer imaging systems and in computer vision are presented. Then a common general forward modeling for them is given and the corresponding inversion problem is presented. Then, after showing the inadequacy of the classical analytical and least square methods for these ill posed inverse problems, a Baye...

متن کامل

E-Bayesian Approach in A Shrinkage Estimation of Parameter of Inverse Rayleigh Distribution under General Entropy Loss Function

‎Whenever approximate and initial information about the unknown parameter of a distribution is available, the shrinkage estimation method can be used to estimate it. In this paper, first the $ E $-Bayesian estimation of the parameter of inverse Rayleigh distribution under the general entropy loss function is obtained. Then, the shrinkage estimate of the inverse Rayleigh distribution parameter i...

متن کامل

A New Method for Root Detection in Minirhizotron Images: Hypothesis Testing Based on Entropy-Based Geometric Level Set Decision

In this paper a new method is introduced for root detection in minirhizotron images for root investigation. In this method firstly a hypothesis testing framework is defined to separate roots from background and noise. Then the correct roots are extracted by using an entropy-based geometric level set decision function. Performance of the proposed method is evaluated on real captured images in tw...

متن کامل

Hybrid Samplers for Ill-Posed Inverse Problems

In the Bayesian approach to ill-posed inverse problems, regularization is imposed by specifying a prior distribution on the parameters of interest and Markov chain Monte Carlo samplers are used to extract information about its posterior distribution. The aim of this paper is to investigate the convergence properties of the random-scan random-walk Metropolis (RSM) algorithm for posterior distrib...

متن کامل

Level Set Methods for Geometric Inverse Problems in Linear Elasticity

In this paper we investigate the regularization and numerical solution of geometric inverse problems related to linear elasticity with minimal assumptions on the geometry of the solution. In particular we consider the probably severely ill-posed reconstruction problem of a twodimensional inclusion from a single boundary measurement. In order to avoid parameterizations, which would introduce a-p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015