HOXB13 homeodomain protein suppresses the growth of prostate cancer cells by the negative regulation of T-cell factor 4.

نویسندگان

  • Chaeyong Jung
  • Ran-Sook Kim
  • Sang-Jin Lee
  • Chihuei Wang
  • Meei-Huey Jeng
چکیده

In prostate gland, HOXB13 is highly expressed from the embryonic stages to adulthood. However, the function of HOXB13 in normal cell growth and tumorigenesis is not yet known. We investigated the role of HOXB13 and mechanism by which it functions in HOXB13-negative cells. Expression of HOXB13 was forced in HOXB13-negative PC3 prostate cancer cells using a liposome-mediated gene transfer approach. Compared with the control clones, HOXB13-expressing PC3 cells exhibited significant inhibition of in vitro and in vivo cell growth with G1 cell cycle arrest mediated by the suppression of cyclin D1 expression. Because cyclin D1 is mainly regulated by beta-catenin/T-cell factor (TCF), TCF-4 response element was used in a reporter gene transcription assay, demonstrating that HOXB13 significantly inhibits TCF-4-mediated transcriptional activity in both prostate and nonprostate cells. This inhibition occurred in a dose-responsive manner and was specific to TCF-4 response element. Western blot analysis demonstrated that HOXB13 down-regulates the expression of TCF-4 and its responsive genes, c-myc and cyclin D1. HOXB13 also suppressed the activity of natural c-myc promoter. This study suggests that HOXB13, a transcription factor, functions as a cell growth suppressor by negatively regulating the expression of TCF-4, which eventually provides negative signals for cell proliferation. This observation will provide valuable insight into the molecular basis of prostate tumorigenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prostate Cancer Cells by the Negative Regulation of T-Cell HOXB13 Homeodomain Protein Suppresses the Growth of Updated Version

In prostate gland, HOXB13 is highly expressed from the embryonic stages to adulthood. However, the function of HOXB13 in normal cell growth and tumorigenesis is not yet known. We investigated the role of HOXB13 and mechanism by which it functions in HOXB13-negative cells. Expression of HOXB13 was forced in HOXB13-negative PC3 prostate cancer cells using a liposome-mediated gene transfer approac...

متن کامل

HOXB13 induces growth suppression of prostate cancer cells as a repressor of hormone-activated androgen receptor signaling.

Androgen receptor (AR) signals play a decisive role in regulating the growth and differentiation of both normal and cancerous prostate cells by triggering the regulation of target genes, in a process in which AR cofactors have critical functions. Because of the highly prostate-specific expression pattern of HOXB13, we studied the role of this homeodomain protein in prostate cells. Expression of...

متن کامل

Receptor Signaling Cells as a Repressor of Hormone-Activated Androgen HOXB13 Induces Growth Suppression of Prostate Cancer

Androgen receptor (AR) signals play a decisive role in regulating the growth and differentiation of both normal and cancerous prostate cells by triggering the regulation of target genes, in a process in which AR cofactors have critical functions. Because of the highly prostate-specific expression pattern of HOXB13, we studied the role of this homeodomain protein in prostate cells. Expression of...

متن کامل

Epigallocatechin-3-Gallate Induces Apoptosis through Up-regulation of Bax and Down-regulation of Bcl-2 in Prostate Cancer Cell Line

Background and Aims: Epigallocatechin-3-gallate (EGCG) is a polyphenolic compound from green tea, which its anticancer effects on many types of cancers have been confirmed, but the molecular mechanism by which EGCG induces apoptosis remains unknown. The aim of the present study was to investigate anti-proliferative properties and apoptotic signaling pathway of EGCG on PC3 human prostate cancer ...

متن کامل

HOXB13-mediated suppression of p21WAF1/CIP1 regulates JNK/c-Jun signaling in prostate cancer cells.

Many prostate cancer (PCa) patients die of recurrent disease due to the emergence of hormone-independent cancer cells of which the mechanism is not fully understood. Our previous studies demonstrated that most castration- resistant prostate cancers (CRPC) overexpress the HOXB13 transcription factor to confer positive growth signals. Since HOXB13 also suppresses p21WAF1/CIP1 (p21) expression, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 64 9  شماره 

صفحات  -

تاریخ انتشار 2004