Diagonalization- and Numerical Renormalization-Group-Based Methods for Interacting Quantum Systems

نویسندگان

  • Reinhard M. Noack
  • Salvatore R. Manmana
چکیده

In these lecture notes, we present a pedagogical review of a number of related numerically exact approaches to quantum many-body problems. In particular, we focus on methods based on the exact diagonalization of the Hamiltonian matrix and on methods extending exact diagonalization using renormalization group ideas, i.e., Wilson’s Numerical Renormalization Group (NRG) and White’s Density Matrix Renormalization Group (DMRG). These methods are standard tools for the investigation of a variety of interacting quantum systems, especially low-dimensional quantum lattice models. We also survey extensions to the methods to calculate properties such as dynamical quantities and behavior at finite temperature, and discuss generalizations of the DMRG method to a wider variety of systems, such as classical models and quantum chemical problems. Finally, we briefly review some recent developments for obtaining a more general formulation of the DMRG in the context of matrix product states as well as recent progress in calculating the time evolution of quantum systems using the DMRG and the relationship of the foundations of the method with quantum information theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقدمه‌ای بر سیستمهای اسپینی کوانتمی

This manuscript is the collection of lectures given in the summer school on strongly correlated electron systems held at Isfahan university of technology, June 2007. A short overview on quantum magnetism and spin systems is presented. The numerical exact diagonalization (Lanczos) alghorithm is explained in a pedagogical ground. This is a method to get some ground state properties on finite clus...

متن کامل

A numerical renormalization group approach for calculating the spectrum of a vibronic system occurring in molecules or impurities in insulators

Theoretically, in order to describe the behavior of a spectrum, a mathematical model whichcould predict the spectrum characteristics is needed. Since in this study a Two-state system has beenused like models which was introduced previously past and could couple with the environment, theformer ideas have been extended in this study. we use the second quantized version for writing thisHamiltonian...

متن کامل

DMRG evaluation of the Kubo formula – Conductance of strongly interacting quantum systems

PACS. 73.63.-b – Electronic transport in nanoscale materials and structures. Abstract. – In this paper we present a novel approach combining linear response theory (Kubo) for the conductance and the Density Matrix Renormalization Group (DMRG). The system considered is one-dimensional and consists of non-interacting tight binding leads coupled to an interacting nanostructure via weak links. Elec...

متن کامل

Transport through quantum dots: a combined DMRG and embedded-cluster approximation study

The numerical analysis of strongly interacting nanostructures requires powerful techniques. Recently developed methods, such as the time-dependent density matrix renormalization group (tDMRG) approach or the embedded-cluster approximation (ECA), rely on the numerical solution of clusters of finite size. For the interpretation of numerical results, it is therefore crucial to understand finite-si...

متن کامل

Density-matrix renormalization-group method in momentum space.

A momentum-space approach of the density-matrix renormalization-group ~DMRG! method is developed. Ground-state energies of the Hubbard model are evaluated using this method and compared with exact diagonalization as well as quantum Monte Carlo results. It is shown that the momentum-space DMRG is a very useful numerical tool for studying the Hubbard model and other fundamental models of interact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005