Lavrentiev regularization of accretive problems
نویسنده
چکیده
This paper deals with Lavrentiev regularization for solving linear ill-posed problems, mostly with respect to accretive operators on Hilbert spaces. We present converse and saturation results which are an important part in regularization theory. As a byproduct we obtain a new result on the quasi-optimality of a posteriori parameter choices. Results in this paper are formulated in Banach spaces whenever possible.
منابع مشابه
Optimal rates for Lavrentiev regularization with adjoint source conditions
There are various ways to regularize ill-posed operator equations in Hilbert space. If the underlying operator is accretive then Lavrentiev regularization (singular perturbation) is an immediate choice. The corresponding convergence rates for the regularization error depend on the given smoothness assumptions, and for general accretive operators these may be both with respect to the operator or...
متن کاملLavrentiev-type Regularization Methods for Hermitian Problems
Lavrentiev regularization is a popular approach to the solution of linear discrete illposed problems with a Hermitian positive semidefinite matrix. This paper describes Lavrentiev-type regularization methods that can be applied to the solution of linear discrete ill-posed problems with a general Hermitian matrix. Fractional Lavrentiev-type methods as well as modifications suggested by the solut...
متن کاملOn convergence of regularization methods for nonlinear parabolic optimal control problems with control and state constraints
Moreau-Yosida and Lavrentiev type regularization methods are considered for nonlinear optimal control problems governed by semilinear parabolic equations with bilateral pointwise control and state constraints. The convergence of optimal controls of the regularized problems is studied for regularization parameters tending to in nity or zero, respectively. In particular, the strong convergence of...
متن کاملControl and Cybernetics on Convergence of Regularization Methods for Nonlinear Parabolic Optimal Control Problems with Control and State Constraints * By
Moreau-Yosida and Lavrentiev type regularization methods are considered for nonlinear optimal control problems governed by semilinear parabolic equations with bilateral pointwise control and state constraints. The convergence of optimal controls of the regularized problems is studied for regularization parameters tending to infinity or zero, respectively. In particular, the strong convergence o...
متن کاملOn Regularization Methods for the Numerical Solution of Parabolic Control Problems with Pointwise
In this paper we study Lavrentiev-type regularization concepts for linear-quadratic parabolic control problems with pointwise state constraints. In the first part, we apply classical Lavrentiev regularization to a problem with distributed control, whereas in the second part, a Lavrentiev-type regularization method based on the adjoint operator is applied to boundary control problems with state ...
متن کامل