Ductile behavior of optical glass in single point diamond turning
نویسندگان
چکیده
Single point diamond turning tests were carried out on a B270 type glass. Submicrometer cutting conditions were applied in order to generate ductile response during single point machining. The profile generated by the rapid removal of the tool tip from the machined surface, analyzed by atomic force microscopy, showed that the brittle-to-ductile transition occurs at a few tenths of micrometers. According to the machining results, the maximum feed rate capable of generating a ductile mode machining behavior is of 0.9 micrometer/revolution. Furthermore, it was shown that with the cutting depth lower than 0.100 micrometer/revolution, the material removal mechanism is totally ductile. Ribbon-like chips were not observed when ductile machining was performed, as commonly seen during ductile machining of semiconductor crystals. The chips removed had a small needle-like shape. This material’s fragile behavior during machining may be related to high densification during tool/material interaction with subsequent elastic recovery response.
منابع مشابه
Comparison between Numerical Simulations and Experiments for Single Point Diamond Turning of Silicon Carbide
Single Point Diamond Turning (SPDT) experiments conducted on single crystal 6-H Silicon Carbide (SiC) has shown chip formation similar to that seen in the machining of metals. The ductile nature of SiC is believed to be the result of a high pressure phase transformation (HPPT), which generates a plastic zone of material that behaves in a metallic manner. This metallic behavior is the basis for ...
متن کاملSingle Point Diamond Turning Effects on Surface Quality and Subsurface Damage in Ceramics
Advanced ceramics, such as Silicon Carbide (SiC) and Quartz, are increasingly being used for industrial applications. These ceramics are hard, strong, inert, and light weight. This combination of properties makes them ideal candidates for tribological, semiconductor, MEMS and optoelectronic applications respectively. Manufacturing these materials without causing surface and subsurface damage is...
متن کاملDuctile regime single point diamond turning of CVD - SiC resulting in an improved and damage - free surface
Silicon carbide (SiC) is one of the advanced engineered ceramic materials designed to operate in extreme environments. One of the main reasons for the choice of this material is due to its excellent electrical, mechanical or optical properties that benefit the semiconductor, MEMS and optoelectronic industry respectively. Manufacturing this material is extremely challenging due to its high hardn...
متن کاملExperimental Investigation of Subsurface Damages Made by Cup Grinding and Lapping Process of Optical Glass BK7 in Ductile Mode
Conventional material removal of BK7 optical glass will normally result in brittle fracture at the surface, generating severe subsurface damage and poor surface finish. Subsurface damages induced by grinding strongly influence the mechanical strength and optical quality of optical glasses. However, through ductile mode grinding it is possible to reduce the surface and subsurface cracks. It is m...
متن کاملExperimental Investigation of Subsurface Damages Made by Cup Grinding and Lapping Process of Optical Glass BK7 in Ductile Mode
Conventional material removal of BK7 optical glass will normally result in brittle fracture at the surface, generating severe subsurface damage and poor surface finish. Subsurface damages induced by grinding strongly influence the mechanical strength and optical quality of optical glasses. However, through ductile mode grinding it is possible to reduce the surface and subsurface cracks. It is m...
متن کامل