On the Response of European Vegetation Phenology to Hydroclimatic Anomalies

نویسندگان

  • Guido Ceccherini
  • Nadine Gobron
  • Mirco Migliavacca
چکیده

Climate change is expected to alter vegetation and carbon cycle processes, with implications for ecosystems. Notably, understanding the sensitivity of vegetation to the anomalies of precipitation and temperature over different land cover classes and the corresponding temporal response is essential for improved climate prediction. In this paper, we analyze vegetation response to hydroclimatic forcings using the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) derived from SeaWiFS (Sea-viewing Wide Field-of-view Sensor) (1998–2002) and (Medium Resolution Imaging Spectrometer) (2003–2011) satellite sensors at ∼1-km resolution. Based on land cover and pixel-wise analysis, we quantify the extent of the dependence of the FAPAR and, ultimately, the phenology on the anomalies of precipitation and temperature over Europe. Statistical tests are performed to establish where this correlation may be regarded as statistically significant. Furthermore, we assess a statistical link between the climate variables and a set of phenological metrics defined from FAPAR measurement. Variation in the phenological response to the unusual values of precipitation and temperature can be interpreted as the result of the balanced opposite effects of water and temperature on vegetation processes. Results suggest very different responses for different land cover classes and seasons. Correlation analysis also indicates that European phenology may be quite sensitive to perturbations in precipitation and temperature regimes, such as those induced by climate change. Remote Sens. 2014, 6 3144

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Land-Cover Phenologies and Their Relation to Climatic Variables in an Anthropogenically Impacted Mediterranean Coastal Area

Mediterranean coastal areas are experiencing rapid land cover change caused by human-induced land degradation and extreme climatic events. Vegetation index time series provide a useful way to monitor vegetation phenological variations. This study quantitatively describes Enhanced Vegetation Index (EVI) temporal changes for Mediterranean land-covers from the perspective of vegetation phenology a...

متن کامل

Analysis of the effect of drought on the phenology parameters of vegetation indexes from the time series of MODIS sensor images (case study: Hamadan province)

Drought is one of the consequences of climate change that slowly and over a relatively long period of time affects climate, environment, agriculture, vegetation, water resources and even economic and social sectors. The serious outcome of drought is the reduction of vegetation cover. In this research, using MODIS sensor satellite images of 2001-2020 (20-year period) and CHIRPS monthly rainfall ...

متن کامل

Phenological response of vegetation to upstream river flow in the Heihe Rive basin by time series analysis of MODIS data

Liquid and solid precipitation is abundant in the high elevation, upper reach of the Heihe River basin in northwestern China. The development of modern irrigation schemes in the middle reach of the basin is taking up an increasing share of fresh water resources, endangering the oasis and traditional irrigation systems in the lower reach. In this study, the response of vegetation in the Ejina Oa...

متن کامل

Land surface phenological response to decadal climate variability across Australia using satellite remote sensing

Land surface phenological cycles of vegetation greening and browning are influenced by variability in climatic forcing. Quantitative spatial information on phenological cycles and their variability is important for agricultural applications, wildfire fuel accumulation, land management, land surface modeling, and climate change studies. Most phenology studies have focused on temperature-driven N...

متن کامل

Identification and Visualization of Dominant Patterns and Anomalies in Remotely Sensed Vegetation Phenology Using a Parallel Tool for Principal Components Analysis

We investigated the use of principal components analysis (PCA) to visualize dominant patterns and identify anomalies in a multi-year land surface phenology data set (231 m × 231 m normalized difference vegetation index (NDVI) values derived from the Moderate Resolution Imaging Spectroradiometer (MODIS)) used for detecting threats to forest health in the conterminous United States (CONUS). Our g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014