In vivo characterization of distinct modality-specific subsets of somatosensory neurons using GCaMP

نویسندگان

  • Edward C. Emery
  • Ana P. Luiz
  • Shafaq Sikandar
  • Rán Magnúsdóttir
  • Xinzhong Dong
  • John N. Wood
چکیده

Mechanistic insights into pain pathways are essential for a rational approach to treating this vast and increasing clinical problem. Sensory neurons that respond to tissue damage (nociceptors) may evoke pain sensations and are typically classified on the basis of action potential velocity. Electrophysiological studies have suggested that most of the C-fiber nociceptors are polymodal, responding to a variety of insults. In contrast, gene deletion studies in the sensory neurons of transgenic mice have frequently resulted in modality-specific deficits. We have used an in vivo imaging approach using the genetically encoded fluorescent calcium indicator GCaMP to study the activity of dorsal root ganglion sensory neurons in live animals challenged with painful stimuli. Using this approach, we can visualize spatially distinct neuronal responses and find that >85% of responsive dorsal root ganglion neurons are modality-specific, responding to either noxious mechanical, cold, or heat stimuli. These observations are mirrored in behavioral studies of transgenic mice. For example, deleting sodium channel Nav1.8 silences mechanical- but not heat-sensing sensory neurons, consistent with behavioral deficits. In contrast, primary cultures of axotomized sensory neurons show high levels of polymodality. After intraplantar treatment with prostaglandin E2, neurons in vivo respond more intensely to noxious thermal and mechanical stimuli, and additional neurons (silent nociceptors) are unmasked. Together, these studies define polymodality as an infrequent feature of nociceptive neurons in normal animals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct behavioral responses evoked by selective optogenetic stimulation of the major TRPV1+ and MrgD+ subsets of C-fibers.

Primary C-fiber nociceptors are broadly divided into peptidergic and nonpeptidergic afferents. TRPV1 is a thermosensitive cation channel mainly localized in peptidergic nociceptors, whereas MrgD is a sensory G protein-coupled receptor expressed in most nonpeptidergic nociceptive afferents. TRPV1 and MrgD fibers have been reported to be primarily involved in thermal and mechanical nociception, r...

متن کامل

Thalamocortical connections of the primary somatosensory cortex

  Although each subdivision of primary somatosensory cortex (SI) receives dense input from the thalamus, but the exact location and type of information that the fibers convey have not been identified yet. In the present study, the exact source of thalamocortical fibers to areas 2 and 3b was investigated using tract-tracing techniques. Following injection of tracer into area 3b, labeled neurons ...

متن کامل

Responses of primary somatosensory cortical neurons to controlled mechanical stimulation.

The results of psychophysical studies suggest that displacement velocity may contribute significantly to the sensation of subcortical somatosensory neurons. The cortical correlates of these phenomena, however, are not known. In the present study the responses of rapidly adapting (RA) neurons in the forelimb region of cat primary somatosensory cortex (SI) to controlled displacement of skin and h...

متن کامل

Semi-intact ex vivo approach to investigate spinal somatosensory circuits

The somatosensory input that gives rise to the perceptions of pain, itch, cold and heat are initially integrated in the superficial dorsal horn of the spinal cord. Here, we describe a new approach to investigate these neural circuits in mouse. This semi-intact somatosensory preparation enables recording from spinal output neurons, while precisely controlling somatosensory input, and simultaneou...

متن کامل

Neuronal basis of tactile sense in the rat whisker system

Using their whiskers, rats have tactile capacities rivaling those of the human with our fingertips. We have carried out experiments to explore how neurons encode touch signals to build up a central representation. Touch signals begin with the receptors in the follicle of each whisker and can be traced to a columnar module in somatosensory cortex that is connected with the same whisker: the well...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2016