Water and Ethanol Droplet Wetting Transition during Evaporation on Omniphobic Surfaces.

نویسندگان

  • Xuemei Chen
  • Justin A Weibel
  • Suresh V Garimella
چکیده

Omniphobic surfaces with reentrant microstructures have been investigated for a range of applications, but the evaporation of high- and low-surface-tension liquid droplets placed on such surfaces has not been rigorously studied. In this work, we develop a technique to fabricate omniphobic surfaces on copper substrates to allow for a systematic examination of the effects of surface topography on the evaporation dynamics of water and ethanol droplets. Compared to a water droplet, the ethanol droplet not only evaporates faster, but also inhibits Cassie-to-Wenzel wetting transitions on surfaces with certain geometries. We use an interfacial energy-based description of the system, including the transition energy barrier and triple line energy, to explain the underlying transition mechanism and behaviour observed. Suppression of the wetting transition during evaporation of droplets provides an important metric for evaluating the robustness of omniphobic surfaces requiring such functionality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaporation-triggered wetting transition for water droplets upon hydrophobic microstructures.

When placed on rough hydrophobic surfaces, water droplets of diameter larger than a few millimeters can easily form pearls, as they are in the Cassie-Baxter state with air pockets trapped underneath the droplet. Intriguingly, a natural evaporating process can drive such a Fakir drop into a completely wetting (Wenzel) state. Our microscopic observations with simultaneous side and bottom views of...

متن کامل

Wetting Transition of the Ethanol−Water Droplet on Smooth and Textured Surfaces

The wetting behavior of an ethanol−water droplet is investigated on graphitic smooth and rough surfaces using molecular dynamics simulations. On a smooth surface, ethanol molecules prefer to stay at the vapor−liquid and solid− liquid interfaces. The contact angle of a droplet on a smooth surface decreases with an increase in the ethanol concentration from 0 to 30 wt %. The corresponding line te...

متن کامل

Evaporation - induced non - wetting droplets on superhydrophilic surfaces

A droplet deposited on a rough, lyophilic surface satisfying the imbibition condition, results in spontaneous spreading and hence complete wetting. However, in this thesis, we demonstrate that this wetting behavior can be altered by superheating the substrate such that droplets can reside in a non-wetting state due to evaporation. Photolithography and deep reactive ion etching were used to fabr...

متن کامل

Droplet evaporation of pure water and protein solution on nanostructured superhydrophobic surfaces of varying heights.

Evaporation of liquids on substrates is important for many applications including lab-on-a-chip, especially when they are in droplets. Unlike on planar substrates, droplet evaporation on micropatterned substrates has been studied only recently and none so far on nanopatterns. Driven by the applicability of nanostructured surfaces to biomaterials and tissue engineering, we report on the evaporat...

متن کامل

The springtail cuticle as a blueprint for omniphobic surfaces.

Omniphobic surfaces found in nature have great potential for enabling novel and emerging products and technologies to facilitate the daily life of human societies. One example is the water and even oil-repellent cuticle of springtails (Collembola). The wingless arthropods evolved a highly textured, hierarchically arranged surface pattern that affords mechanical robustness and wetting resistance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Scientific reports

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015